A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 3 Issue 4
Oct.  2016

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 6.171, Top 11% (SCI Q1)
    CiteScore: 11.2, Top 5% (Q1)
    Google Scholar h5-index: 51, TOP 8
Turn off MathJax
Article Contents
Hua Chen and YangQuan Chen, "Fractional-order Generalized Principle of Self-support (FOGPSS) in Control System Design," IEEE/CAA J. Autom. Sinica, vol. 3, no. 4, pp. 430-441, Oct. 2016.
Citation: Hua Chen and YangQuan Chen, "Fractional-order Generalized Principle of Self-support (FOGPSS) in Control System Design," IEEE/CAA J. Autom. Sinica, vol. 3, no. 4, pp. 430-441, Oct. 2016.

Fractional-order Generalized Principle of Self-support (FOGPSS) in Control System Design

Funds:

This work was supported by the National Natural Science Foundation of China 61304004, 61503205

the Foundation of China Scholarship Council 201406 715056

the Foundation of Changzhou Key Laboratory of Special Robot and Intelligent Technology CZSR2014005

and the Changzhou Science and Technology Program CJ20160013

More Information
  • This paper reviews research that studies the principle of self-support (PSS) in some control systems and proposes a fractional-order generalized PSS framework for the first time. The existing PSS approach focuses on practical tracking problem of integer-order systems including robotic dynamics, high precision linear motor system, multi-axis high precision positioning system with unmeasurable variables, imprecise sensor information, uncertain parameters and external disturbances. More generally, by formulating the fractional PSS concept as a new generalized framework, we will focus on the possible fields of the fractional-order control problems such as practical tracking, -tracking, etc. of robot systems, multiple mobile agents, discrete dynamical systems, time delay systems and other uncertain nonlinear systems. Finally, the practical tracking of a first-order uncertain model of automobile is considered as a simple example to demonstrate the efficiency of the fractional-order generalized principle of self-support (FOGPSS) control strategy.

     

  • loading
  • [1]
    Novaković Z R. The Principle of Self-Support in Control Systems. Amsterdam, New York:Elsevier Science Ltd., 1992.
    [2]
    Alley R B. The Two-Mile Time Machine:Ice Cores, Abrupt Climate Change, and Our Future. Princeton:Princeton University Press, 2014.
    [3]
    Novaković Z R. The principle of self-support in robot control synthesis. IEEE Transactions on Systems, Man, and Cybernetics, 1991, 21(1):206-220 doi: 10.1109/21.101150
    [4]
    Tan K K, Dou H F, Chen Y Q, Lee T H. High precision linear motor control via relay-tuning and iterative learning based on zero-phase filtering. IEEE Transactions on Control Systems Technology, 2001, 9(2):244-253 doi: 10.1109/87.911376
    [5]
    Novaković Z R. Robust tracking control for robots with bounded input. Journal of Dynamic Systems, Measurement, and Control, 1992, 114(2):315-319 doi: 10.1115/1.2896530
    [6]
    Novaković Z R. The principle of self-support:a new approach to kinematic control of robots. In:Proceedings of the 5th International Conference on Advanced Robotics, 1991. Robots in Unstructured Environments. Pisa, Italy:IEEE, 1991. 1444-1447
    [7]
    Ulu N G, Ulu E, Cakmakci M. Learning based cross-coupled control for multi-axis high precision positioning systems. In:Proceedings of the 5th ASME Annual Dynamic Systems and Control Conference Joint with the 11th JSME Motion and Vibration Conference. Florida, USA:ASME, 2012. 535-541
    [8]
    Özdemir N, Avci D. Optimal control of a linear time-invariant space-time fractional diffusion process. Journal of Vibration and Control, 2014, 20(3):370-380 doi: 10.1177/1077546312464678
    [9]
    Zhao X, Yang H T, He Y Q. Identification of constitutive parameters for fractional viscoelasticity. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(1):311-322 doi: 10.1016/j.cnsns.2013.05.019
    [10]
    Ge Z M, Jhuang W R. Chaos, control and synchronization of a fractional order rotational mechanical system with a centrifugal governor. Chaos, Solitons and Fractals, 2007, 33(1):270-289 doi: 10.1016/j.chaos.2005.12.040
    [11]
    Chen H, Chen W, Zhang B W, Cao H T. Robust synchronization of incommensurate fractional-order chaotic systems via second-order sliding mode technique. Journal of Applied Mathematics, 2013, 2013:Article ID 321253
    [12]
    Jesus I S, Tenreiro Machado J A. Development of fractional order capacitors based on electrolyte processes. Nonlinear Dynamics, 2009, 56(1-2):45-55 doi: 10.1007/s11071-008-9377-8
    [13]
    Müller S, K ästner M, Brummund J, Ulbricht V. A nonlinear fractional viscoelastic material model for polymers. Computational Materials Science, 2011, 50(10):2938-2949 doi: 10.1016/j.commatsci.2011.05.011
    [14]
    Rivero M, Trujillo J J, Vázquez L, Pilar Velasco M. Fractional dynamics of populations. Applied Mathematics and Computation, 2011, 218(3):1089-1095 doi: 10.1016/j.amc.2011.03.017
    [15]
    Chen Y Q, Moore K L. Discretization schemes for fractional-order differentiators and integrators. IEEE Transactions on Circuits and Systems-I:Fundamental Theory and Applications, 2002, 49(3):363-367 doi: 10.1109/81.989172
    [16]
    Corradini M L, Giambó R, Pettinari S. On the adoption of a fractional-order sliding surface for the robust control of integer-order LTI plants. Automatica, 2015, 51:364-371 doi: 10.1016/j.automatica.2014.10.075
    [17]
    Pisano A, Rapaić M, Jeličić Z, Usai E. Nonlinear fractional PI control of a class of fractional-order systems. In:Proceedings of the 2012 IFAC Conference on Advances in PID Control. Brescia, Italy, 2012. 637-642
    [18]
    Monje C A, Vinagre B M, Feliu V, Chen Y Q. Tuning and autotuning of fractional order controllers for industry applications. Control Engineering Practice, 2008, 16(7):798-812 doi: 10.1016/j.conengprac.2007.08.006
    [19]
    Monje C A, Chen Y Q, Vinagre B M, Xue D, Feliu-Batlle V. FractionalOrder Systems and Controls. London:Springer, 2010.
    [20]
    Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations. Amsterdam, The Netherlands:Elsevier, 2006.
    [21]
    Podlubny I. Fractional Differential Equations. New York:Academic Press, 1999.
    [22]
    Li C P, Deng W H. Remarks on fractional derivatives. Applied Mathematics and Computation, 2007, 187(2):777-784 doi: 10.1016/j.amc.2006.08.163
    [23]
    Samko S G, Kilbas A A, Marichev O I. Fractional Integrals and Derivatives:Theory and Applications. Switzerland:Gordon and Breach Science Publishers, 1993.
    [24]
    Li C P, Zeng F H. Numerical Methods for Fractional Calculus. Boca Raton, FL:Chapman and Hall/CRC, 2015.
    [25]
    Miller K S, Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations. New York:Wiley, 1993.
    [26]
    Oldham K B, Spanier J. The Fractional Calculus. New York:Academic Press, 1974.
    [27]
    Li C P, Dao X H, Guo P. Fractional derivatives in complex planes. Nonlinear Analysis:Theory, Methods, and Applications, 2009, 71(5-6):1857-1869 doi: 10.1016/j.na.2009.01.021
    [28]
    Li C P, Qian D L, Chen Y Q. On Riemann-Liouville and Caputo derivatives. Discrete Dynamics in Nature and Society, 2011, 2011:Article ID 562494
    [29]
    Li C P, Zhao Z G. Introduction to fractional integrability and differentiability. The European Physical Journal Special Topics, 2011, 193(1):5-26 doi: 10.1140/epjst/e2011-01378-2
    [30]
    Li C P, Zhang F R, Kurths J, Zeng F H. Equivalent system for a multiple-rational-order fractional differential system. Philosophical Transactions of the Royal Society A:Mathematical, Physical, and Engineering Sciences, 2013, 371(1990):20120156 doi: 10.1098/rsta.2012.0156
    [31]
    Li Y, Chen Y Q, Podlubny I. Stability of fractional-order nonlinear dynamic systems:Lyapunov direct method and generalized MittagLeffler stability. Computers and Mathematics with Applications, 2010, 59(5):1810-1821 doi: 10.1016/j.camwa.2009.08.019
    [32]
    Li Y, Chen Y Q, Podlubny I. Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica, 2009, 45(8):1965-1969 doi: 10.1016/j.automatica.2009.04.003
    [33]
    Ahn H S, Chen Y Q. Necessary and sufficient stability condition of fractional-order interval linear systems. Automatica, 2008, 44(11):2985-2988 doi: 10.1016/j.automatica.2008.07.003
    [34]
    Ahn H S, Chen Y Q, Podlubny I. Robust stability test of a class of linear time-invariant interval fractional-order system using Lyapunov inequality. Applied Mathematics and Computation, 2007, 187(1):27-34 doi: 10.1016/j.amc.2006.08.099
    [35]
    Lu J G, Chen Y Q. Robust stability and stabilization of fractional-order interval systems with the fractional order α:the 0 << α << 1 case. IEEE Transactions on Automatic Control, 2010, 55(1):152-158 doi: 10.1109/TAC.2009.2033738
    [36]
    Chen Y Q, Moore K L. Analytical stability bound for a class of delayed fractional-order dynamic systems. Nonlinear Dynamics, 2002, 29(1-4):191-200 http://cn.bing.com/academic/profile?id=213140877&encoded=0&v=paper_preview&mkt=zh-cn
    [37]
    Aguila-Camacho N, Duarte-Mermoud M A, Gallegos J A. Lyapunov functions for fractional order systems. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(9):2951-2957 doi: 10.1016/j.cnsns.2014.01.022
    [38]
    Podlubny I. Fractional Differential Equations:an Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications. New York:Academic Press, 1999.
    [39]
    Diethelm K, Ford N J, Freed A D. A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynamics, 2002, 29(1-4):3-22 http://cn.bing.com/academic/profile?id=1509146820&encoded=0&v=paper_preview&mkt=zh-cn
    [40]
    Ilchmann A, Ryan E P. Universal λ-tracking for nonlinearly-perturbed systems in the presence of noise. Automatica, 1994, 30(2):337-346 doi: 10.1016/0005-1098(94)90035-3
    [41]
    Allgöwer F, Ilchmann A. Multivariable adaptive λ-tracking for nonlinear chemical processes. In:Proceedings of the 3rd European Control Conference. Rome, Italy, 1995. 1645-1651
    [42]
    Allgöwer F, Ashman J, Ilchmann A. High-gain λ-tracking for nonlinear systems. Automatica, 1997, 33(5):881-888 doi: 10.1016/S0005-1098(96)00226-9
    [43]
    Ilchmann A, Logemann H. Adaptive λ-tracking for a class of infinitedimensional systems. Systems and Control Letters, 1998, 34(1-2):11-21 doi: 10.1016/S0167-6911(97)00133-3
    [44]
    Ilchmann A, Townley S. Adaptive high-gain λ-tracking with variable sampling rate. Systems and Control Letters, 1999, 36(4):285-293 doi: 10.1016/S0167-6911(98)00101-7
    [45]
    Ilchmann A, Thuto M, Townley S. Input constrained adaptive tracking with applications to exothermic chemical reaction models. SIAM Journal on Control and Optimization, 2004, 43(1):154-173 doi: 10.1137/S0363012901391081
    [46]
    Ilchmann A, Thuto M, Townley S. λ-tracking for exothermic chemical reactions with saturating inputs. In:Proceedings of the 2001 European Control Conference (ECC). Porto, Portugal:IEEE, 2001. 1928-1933
    [47]
    Ilchmann A, Trenn S. Input constrained funnel control with applications to chemical reactor models. Systems and Control Letters, 2004, 53(5):361-375 doi: 10.1016/j.sysconle.2004.05.014
    [48]
    Ilchmann A, Townley S, Thuto M. Adaptive sampled-data tracking for input-constrained exothermic chemical reaction models. Systems and Control Letters, 2005, 54(12):1149-1161 doi: 10.1016/j.sysconle.2005.04.004
    [49]
    Shinskey F G. Process-Control Systems. New York:McGraw-Hill Book Company, 1967.
    [50]
    Zhong Q C. Robust Control of Time-Delay Systems. London:Springer, 2006.
    [51]
    Niculescu S L. Delay Effects on Stability:A Robust Control Approach. London:Springer, 2001.
    [52]
    Yi Y, Guo L, Wang H. Adaptive statistic tracking control based on twostep neural networks with time delays. IEEE Transactions on Neural Networks, 2009, 20(3):420-429 doi: 10.1109/TNN.2008.2008329
    [53]
    Fridman E. A refined input delay approach to sampled-data control. Automatica, 2010, 46(2):421-427 doi: 10.1016/j.automatica.2009.11.017
    [54]
    Wang M, Chen B, Liu X P, Shi P. Adaptive fuzzy tracking control for a class of perturbed strict-feedback nonlinear time-delay systems. Fuzzy Sets and Systems, 2008, 159(8):949-967 doi: 10.1016/j.fss.2007.12.022
    [55]
    Wu H S. Adaptive robust tracking and model following of uncertain dynamical systems with multiple time delays. IEEE Transactions on Automatic Control, 2004, 49(4):611-616 doi: 10.1109/TAC.2004.825634
    [56]
    Wang M, Ge S S, Hong K S. Approximation-based adaptive tracking control of pure-feedback nonlinear systems with multiple unknown time-varying delays. IEEE Transactions on Neural Networks, 2010, 21(11):1804-1816 doi: 10.1109/TNN.2010.2073719
    [57]
    Tseng C S. Model reference output feedback fuzzy tracking control design for nonlinear discrete-time systems with time-delay. IEEE Transactions on Fuzzy Systems, 2006, 14(1):58-70 doi: 10.1109/TFUZZ.2005.861609
    [58]
    Zhang H G, Song R Z, Wei Q L, Zhang T Y. Optimal tracking control for a class of nonlinear discrete-time systems with time delays based on heuristic dynamic programming. IEEE Transactions on Neural Networks, 2011, 22(12):1851-1862 doi: 10.1109/TNN.2011.2172628
    [59]
    Li Q K, Zhao J, Dimirovski G M, Liu X J. Tracking control for switched linear systems with time-delay:a state-dependent switching method. Asian Journal of Control, 2009, 11(5):517-526 doi: 10.1002/asjc.v11:5
    [60]
    Cho G R, Chang P H, Park S H, Jin M L. Robust tracking under nonlinear friction using time-delay control with internal model. IEEE Transactions on Control Systems Technology, 2009, 17(6):1406-1414 doi: 10.1109/TCST.2008.2007650
    [61]
    Wang L X. Adaptive Fuzzy Systems and Control:Design and Stability Analysis. Englewood Cliffs, NJ:Prentice-Hall, 1994.
    [62]
    Boulkroune A, Tadjine M, M'Saad M, Farza M. How to design a fuzzy adaptive controller based on observers for uncertain affine nonlinear systems. Fuzzy Sets and Systems, 2008, 159(8):926-948 doi: 10.1016/j.fss.2007.08.015
    [63]
    Chen H, Wang C L, Yang L, Zhang D K. Semiglobal stabilization for nonholonomic mobile robots based on dynamic feedback with inputs saturation. Journal of Dynamic Systems, Measurement, and Control, 2012, 134(4):041006 doi: 10.1115/1.4006076
    [64]
    Chen H. Robust stabilization for a class of dynamic feedback uncertain nonholonomic mobile robots with input saturation. International Journal of Control, Automation, and Systems, 2014, 12(6):1216-1224 doi: 10.1007/s12555-013-0492-z
    [65]
    Chen H, Wang C L, Zhang B W, Zhang D K. Saturated tracking control for nonholonomic mobile robots with dynamic feedback. Transactions of the Institute of Measurement and Control, 2013, 35(2):105-116 doi: 10.1177/0142331211431719
    [66]
    Lin Z L, Saberi A. Semi-global exponential stabilization of linear discrete-time systems subject to input saturation via linear feedbacks. Systems and Control Letters, 1995, 24(2):125-132 doi: 10.1016/0167-6911(94)00020-V
    [67]
    Boškovic J D, Li S M, Mehra R K. Robust adaptive variable structure control of spacecraft under control input saturation. Journal of Guidance, Control, and Dynamics, 2001, 24(1):14-22 doi: 10.2514/2.4704
    [68]
    Chen H, Wang C L, Liang Z Y, Zhang D K, Zhang H J. Robust practical stabilization of nonholonomic mobile robots based on visual servoing feedback with inputs saturation. Asian Journal of Control, 2014, 16(3):692-702 doi: 10.1002/asjc.2014.16.issue-3
    [69]
    Chen H, Ding S H, Chen X, Wang L H, Zhu C P, Chen W. Global finitetime stabilization for nonholonomic mobile robots based on visual servoing. International Journal of Advanced Robotic Systems, 2014, 11:1-13 http://cn.bing.com/academic/profile?id=1976149141&encoded=0&v=paper_preview&mkt=zh-cn
    [70]
    Li B J, Chen H, Chen J F. Global finite-time stabilization for a class of nonholonomic chained system with input saturation. Journal of Information and Computational Science, 2014, 11(3):883-890 doi: 10.12733/issn.1548-7741
    [71]
    Chen Hua, Wang Chao-Li, Yang Fang, Xu Wei-Dong. Finite-time saturated stabilization of nonholonomic mobile robots based on visual servoing. Control Theory and Applications, 2012, 29(6):817-823(in Chinese) http://cn.bing.com/academic/profile?id=2383042891&encoded=0&v=paper_preview&mkt=zh-cn
    [72]
    Chen H, Chen J F, Lei Y, Chen W X, Wang Y W. Further results of semiglobal saturated stabilization for nonholonomic mobile robots. In:Proceedings of the 26th Chinese Control and Decision Conference (2014 CCDC). Changsha, China:IEEE, 2014. 4545-4550
    [73]
    Chen H, Zhang J B. Semiglobal saturated practical stabilization for nonholonomic mobile robots with uncertain parameters and angle measurement disturbance. In:Proceedings of the 25th Chinese Control and Decision Conference (CCDC). Guiyang, China:IEEE, 2013. 3731-3736
    [74]
    Su H S, Chen M Z Q, Wang X F, Lam J. Semiglobal observer-based leader-following consensus with input saturation. IEEE Transactions on Industrial Electronics, 2014, 61(6):2842-2850 doi: 10.1109/TIE.2013.2275976
    [75]
    Mobayen S. Robust tracking controller for multivariable delayed systems with input saturation via composite nonlinear feedback. Nonlinear Dynamics, 2014, 76(1):827-838 doi: 10.1007/s11071-013-1172-5
    [76]
    Wang X, Saberi A, Stoorvogel A A. Stabilization of discrete-time linear systems subject to input saturation and multiple unknown constant delays. IEEE Transactions on Automatic Control, 2014, 59(6):1667-1672 doi: 10.1109/TAC.2013.2294615
    [77]
    Fischer N, Dani A, Sharma N, Dixon W E. Saturated control of an uncertain nonlinear system with input delay. Automatica, 2013, 49(6):1741-1747 doi: 10.1016/j.automatica.2013.02.013
    [78]
    Lin Z L, Saberi A. Semi-global exponential stabilization of linear systems subject to input saturation via linear feedbacks. Systems and Control Letters, 1993, 21(3):225-239 doi: 10.1016/0167-6911(93)90033-3
    [79]
    Yang T, Meng Z Y, Dimarogonas D V, Johansson K H. Global consensus for discrete-time multi-agent systems with input saturation constraints. Automatica, 2014, 50(2):499-506 doi: 10.1016/j.automatica.2013.11.008
    [80]
    Lim Y H, Oh K K, Ahn H S. Stability and stabilization of fractionalorder linear systems subject to input saturation. IEEE Transactions on Automatic Control, 2013, 58(4):1062-1067 doi: 10.1109/TAC.2012.2218064
    [81]
    Ortega R, Spong M W. Adaptive motion control of rigid robots:a tutorial. Automatica, 1989, 25(6):877-888 doi: 10.1016/0005-1098(89)90054-X
    [82]
    Nicosia S, Tomei P. Robot control by using only joint position measurements. IEEE Transactions on Automatic Control, 1990, 35(9):1058-1061 doi: 10.1109/9.58537
    [83]
    Corless M. Control of uncertain nonlinear systems. Journal of Dynamic Systems, Measurement, and Control, 1993, 115(2B):362-372 doi: 10.1115/1.2899076
    [84]
    Utkin V I. Sliding Modes and Their Application in Variable Structure Systems. Moscow:MIR Publishers, 1978.
    [85]
    Slotine J J, Li W P. Applied Nonlinear Control. Englewood Cliffs, NJ:Prentice Hall, 1991.
    [86]
    Zhang F, Dawson D M, de Queiroz M S, Dixon W E. Global adaptive output feedback tracking control of robot manipulators. IEEE Transactions on Automatic Control, 2000, 45(6):1203-1208 doi: 10.1109/9.863607
    [87]
    Hsu S H, Fu L C. A fully adaptive decentralized control of robot manipulators. Automatica, 2006, 42(10):1761-1767 doi: 10.1016/j.automatica.2006.05.012
    [88]
    Galicki M. An adaptive regulator of robotic manipulators in the task space. IEEE Transactions on Automatic Control, 2008, 53(4):1058-1062 doi: 10.1109/TAC.2008.921022
    [89]
    Galicki M. Control of mobile manipulators in a task space. IEEE Transactions on Automatic Control, 2012, 57(2):2962-2967 http://cn.bing.com/academic/profile?id=2069282182&encoded=0&v=paper_preview&mkt=zh-cn
    [90]
    Galicki M. Finite-time control of robotic manipulators. Automatica, 2015, 51:49-54 doi: 10.1016/j.automatica.2014.10.089
    [91]
    Ijspeert A J, Nakanishi J, Schaal S. Movement imitation with nonlinear dynamical systems in humanoid robots. In:Proceedings of the 2002 IEEE International Conference on Robotics and Automation. Washington, DC:IEEE, 2002. 1398-1403
    [92]
    Katić D, Vukobratović M. Survey of intelligent control techniques for humanoid robots. Journal of Intelligent and Robotic Systems, 2003, 37(2):117-141 doi: 10.1023/A:1024172417914
    [93]
    Furuta T, Tawara T, Okumura Y, Shimizu M, Tomiyama K. Design and construction of a series of compact humanoid robots and development of biped walk control strategies. Robotics and Autonomous Systems, 2001, 37(2-3):81-100 doi: 10.1016/S0921-8890(01)00151-8
    [94]
    Goswami A, Yun S, Nagarajan U, Lee S H, Yin K K, Kalyanakrishnan S. Direction-changing fall control of humanoid robots:theory and experiments. Autonomous Robots, 2014, 36(3):199-223 doi: 10.1007/s10514-013-9343-2
    [95]
    Eaton M. Introduction. Evolutionary Humanoid Robotics. Berlin Heidelberg:Springer, 2015. 1-7
    [96]
    Yuh J. Design and control of autonomous underwater robots:a survey. Autonomous Robots, 2000, 8(1):7-24 http://cn.bing.com/academic/profile?id=1595895163&encoded=0&v=paper_preview&mkt=zh-cn
    [97]
    Antonelli G. Underwater Robots (Third edition). Switzerland:Springer, 2014.
    [98]
    Choi S K, Yuh J. Experimental study on a learning control system with bound estimation for underwater robots. Autonomous Robots, 1996, 3(2-3):187-194 doi: 10.1007/BF00141154
    [99]
    Chu W S, Lee K T, Song S H, Han M W, Lee J Y, Kim H S, Kim M S, Park Y J, Cho K J, Ahn S H. Review of biomimetic underwater robots using smart actuators. International Journal of Precision Engineering and Manufacturing, 2012, 13(7):1281-1292 doi: 10.1007/s12541-012-0171-7
    [100]
    Krieg M, Mohseni K. Thrust characterization of a bioinspired vortex ring thruster for locomotion of underwater robots. IEEE Journal of Oceanic Engineering, 2008, 33(2):123-132 doi: 10.1109/JOE.2008.920171
    [101]
    Taylor T. A genetic regulatory network-inspired real-time controller for a group of underwater robots. In:Proceedings of the 8th Conference on Intelligent Autonomous Systems (IAS-8). Amsterdam, 2004. 403-412
    [102]
    Jaulin L. A nonlinear set membership approach for the localization and map building of underwater robots. IEEE Transactions on Robotics, 2009, 25(1):88-98 doi: 10.1109/TRO.2008.2010358
    [103]
    Tarn T J, Shoults G A, Yang S P. A dynamic model of an underwater vehicle with a robotic manipulator using Kane's method. Underwater Robots. US:Springer, 1996. 195-209
    [104]
    Nakamura Y, Mukherjee R. Nonholonomic path planning of space robots via a bidirectional approach. IEEE Transactions on Robotics and Automation, 1991, 7(4):500-514 doi: 10.1109/70.86080
    [105]
    Wee L B, Walker M W. On the dynamics of contact between space robots and configuration control for impact minimization. IEEE Transactions on Robotics and Automation, 1993, 9(5):581-591 doi: 10.1109/70.258051
    [106]
    Ulrich S, Sasiadek J Z. Extended Kalman filtering for flexible joint space robot control. In:Proceedings of the 2011 American Control Conference. San Francisco, CA:IEEE, 2011. 1021-1026
    [107]
    Campion G, Bastin G, D'Andrea-Novel B. Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Transactions on Robotics and Automation, 1996, 12(1):47-62 doi: 10.1109/70.481750
    [108]
    Dixon W E, Dawson D M, Zergeroglu E, Behal A. Nonlinear Control of Wheeled Mobile Robots. London:Springer-Verlag, 2001.
    [109]
    Dong W J. Tracking control of multiple-wheeled mobile robots with limited information of a desired trajectory. IEEE Transactions on Robotics, 2012, 28(1):262-268 doi: 10.1109/TRO.2011.2166436
    [110]
    Chwa D. Fuzzy adaptive tracking control of wheeled mobile robots with state-dependent kinematic and dynamic disturbances. IEEE Transactions on Fuzzy Systems, 2012, 20(3):587-593 doi: 10.1109/TFUZZ.2011.2176738
    [111]
    Siegwart R, Nourbakhsh I R, Scaramuzza D. Introduction to Autonomous Mobile Robots (Second edition). Cambridge:MIT Press, 2011.
    [112]
    Blažič S. A novel trajectory-tracking control law for wheeled mobile robots. Robotics and Autonomous Systems, 2011, 59(11):1001-1007 doi: 10.1016/j.robot.2011.06.005
    [113]
    Wei S M, Uthaichana K, Žefran M, DeCarlo R. Hybrid model predictive control for the stabilization of wheeled mobile robots subject to wheel slippage. IEEE Transactions on Control Systems Technology, 2013, 21(6):2181-2193 doi: 10.1109/TCST.2012.2227964
    [114]
    Roman H T, Pellegrino B A, Sigrist W R. Pipe crawling inspection robots:an overview. IEEE Transactions on Energy Conversion, 1993, 8(3):576-583 doi: 10.1109/60.257076
    [115]
    Roh S, Choi H R. Differential-drive in-pipe robot for moving inside urban gas pipelines. IEEE Transactions on Robotics, 2005, 21(1):1-17 doi: 10.1109/TRO.2004.838000
    [116]
    Park J, Hyun D, Cho W H, Kim T H, Yang H S. Normal-force control for an in-pipe robot according to the inclination of pipelines. IEEE Transactions on Industrial Electronics, 2011, 58(12):5304-5310 doi: 10.1109/TIE.2010.2095392
    [117]
    Murray R M, Walsh G, Sastry S S. Stabilization and tracking for nonholonomic control systems using time-varying state feedback. In:Proceedings of the 2nd IFAC Symposium on Nonlinear Control Systems Design 1992. Bordeaux, France:IFAC, 1993. 109-114
    [118]
    Huang J S, Wen C Y, Wang W, Jiang Z P. Adaptive stabilization and tracking control of a nonholonomic mobile robot with input saturation and disturbance. Systems and Control Letters, 2013, 62(3):234-241 doi: 10.1016/j.sysconle.2012.11.020
    [119]
    Chen H, Zhang J B, Chen B Y, Li B J. Global practical stabilization for non-holonomic mobile robots with uncalibrated visual parameters by using a switching controller. IMA Journal of Mathematical Control and Information, 2013, 30(4):543-557 doi: 10.1093/imamci/dns044
    [120]
    Chen H, Wang C L, Zhang D K, Yang F. Finite-time robust stabilization of dynamic feedback nonholonomic mobile robots based on visual servoing with input saturation. In:Proceedings of the 10th World Congress on Intelligent Control and Automation (WCICA). Beijing, China:IEEE, 2012. 3686-3691
    [121]
    Brockett R W. Asymptotic stability and feedback stabilization. Differential Geometric Control Theory. Boston:Birkhauser, 1983. 181-208
    [122]
    Sordalen O J, Egeland O. Exponential stabilization of nonholonomic chained systems. IEEE Transactions on Automatic Control, 1995, 40(1):35-49 doi: 10.1109/9.362901
    [123]
    Prieur C, Astolfi A. Robust stabilization of chained systems via hybrid control. IEEE Transactions on Automatic Control, 2003, 48(10):1768-1772 doi: 10.1109/TAC.2003.817909
    [124]
    Hussein I I, Bloch A M. Optimal control of underactuated nonholonomic mechanical systems. IEEE Transactions on Automatic Control, 2008, 53(3):668-682 doi: 10.1109/TAC.2008.919853
    [125]
    Qu Z, Wang J, Plaisted C E, Hull R A. Global-stabilizing near-optimal control design for nonholonomic chained systems. IEEE Transactions on Automatic Control, 2006, 51(9):1440-1456 doi: 10.1109/TAC.2006.880965
    [126]
    Suruz Miah M, Gueaieb W. Optimal time-varying P-controller for a class of uncertain nonlinear systems. International Journal of Control, Automation and Systems, 2014, 12(4):722-73 doi: 10.1007/s12555-013-0234-2

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (1065) PDF downloads(3) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return