
 

 

Supplementary Material of “Estimation Based Adaptive
Constraint Control for a Class of Coupled String Systems”

Sai Zhang, Li Tang, Member, IEEE, and
Yan-Jun Liu, Member, IEEE

    I.  List of Materials
This PDF file includes the following materials.
1) Contributions;
2) Dynamics Analysis;
3) Proof of Lemma 1;
4) Proof of Lemma 2;
5) Proof of Theorem 1;
6) Four Remarks;  

II.  Contributions
The main contributions of this paper are listed below:

|T (ℓ, t)| ≤ TM

1)  Compared  to  [16],  the  tension  on  the  string  system  studied  in
this paper is a spatiotemporally varying function. The boundary ten-
sion of the string is constrained by applying the logarithmic BLF to
ensure that the boundary tension remains within the constraint range

.
2) A  common  solution  to  deal  with  unknown  boundary  distur-

bances  is  to  apply  symbolic  functions,  which  is  a  relatively  simple
method. However, since the symbolic function has discontinuity, the
controller constructed based on it may have chattering phenomenon.
Incorporating the Lyapunov function,  two disturbance observers  are
designed  to  estimate  unknown  boundary  disturbances  in  this  paper,
which avoid  the  chattering  phenomenon  induced  by  the  sign  func-
tion.

3) The case of unknown parameters of the string system is consid-
ered, and  the  adaptive  method  is  utilized  to  compensate  the  uncer-
tainty of system. Two adaptive boundary controllers are designed to
effectively mitigate string vibrations.  

III.  Dynamics Analysis

Ek (t) Ep (t)
Analyzing the  coupled  string  system  from  the  dynamics  perspec-

tive,  the  kinetic  energy  and  the  potential  energy  of  the
string system are expressed as
 

Ek (t) =
ρ

2
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]
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[
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fx (s, t) fy (s, t)
dx (t) dy (t)

The  virtual  work  done  by  distributed  disturbances , 
on the  string and boundary disturbances ,  on the  tip  pay-
load can be expressed as
 

δW f (t) =
w ℓ

0

[
fx (s, t)δx (s, t)+ fy (s, t)δy (s, t)

]
ds

+dx (t)δx (ℓ, t)+dy (t)δy (ℓ, t) . (3)
Ux (t)

Uy (t)
In  order  to  restrain  the  vibrations,  boundary  control  forces ,

 are  imported  at  the  boundary  of  the  string.  The  virtual  work
done by the control is given by
 

δWm (t) = Ux (t)δx (ℓ, t)+Uy (t)δy (ℓ, t) . (4)
Therefore, the total virtual work done on the system is described as

 

δW (t) = δW f (t)+δWm (t) (5)

r t2
t1 δ (Ek −Ep+

W)dt = 0, t1 < t < t2
Through  the  application  of  Hamilton’s  principle  

,  the  governing  equations  (1),  (2)  and  boundary
conditions  (3)−(5)  of  the  coupled  string  system are  obtained  after  a
series of lengthy and straightforward calculations.  

IV.  Proof of Lemma 1
Lemma 1: The upper and lower bounds of the Lyapunov function

given by (16) are
 

0 ≤ α1

[
Π (t)+Γ2 (t)+ T̃0

2
(ℓ, t)+ m̃2 (t) + ẼA

2
(t)

]
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α1,α2 > 0 Π (t) =
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0
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s

)
dswhere  and .

2y2
s (s, t) ≤ x2

s (s, t)
Proof: According  to  Young’s  inequality  and  the  inequality

, we obtain
 

− 1
2σ

w ℓ
0

x2
sds−σ

w ℓ
0

x4
sds ≤

w ℓ
0

ysx2
sds

≤ 1
σ

w ℓ
0

y2
sds+σ

w ℓ
0

x4
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σ > 0 Γ1 (t)where  is  a  constant.  Furthermore,  by  the  definition  of ,
one has
 

a
2
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2σ
,EA, κ+EA
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1
4
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2
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(
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1
σ

)
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(
1
4
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Π (t) (8)

σwhere  satisfies
 

T0 (ℓ) > 0

T0 (ℓ)− EA
2σ
> 0

κ (ℓ)+EA
(

1
4
−σ

)
> 0

κ (ℓ)+EA
(

1
4
+σ

)
> 0.

(9)

Thus, we have
 

0 ≤ ω1Π (t) ≤ Γ1 (t) ≤ ω2Π (t) (10)

ω1 = (a/2)min
[
ρ, T0 − EA/2σ, EA, κ + EA ((1/4)−σ)

]
> 0

ω2 = (a/2)max
[
ρ, T0, κ+EA (1+1/σ) ,EA (1/4+σ)

]
> 0

where ,
 .

Using Young’s inequality for (19), one obtains
 

|Γ3 (t)| ≤ λρℓ
w ℓ

0

(
x2

t + x2
s + y2

t + y2
s

)
ds ≤ θ1Π (t) (11)

θ1 = λρℓwhere , thus (11) is equivalent to
 

−θ1Π (t) ≤ Γ3 (t) ≤ θ1Π (t) . (12)

0 < λ < ω1/ρℓ 0 < θ1 < ω1

Accounting for λ is a small  positive weighting constant that  satis-
fies , thereby , and
 {

θ2 = ω1 − θ1 ≥ 0
θ3 = ω2 + θ1 ≥ 0.

(13)

Combining (10), (12) with (13), one gets
 

0 ≤ θ2Π (t) ≤ Γ1 (t)+Γ3 (t) ≤ θ3Π (t) . (14)
α1 =min(θ2,1,γ3/2, d

γ4/2,γ5/2) > 0 α2 =max(θ3,1,γ3/2,γ4/2,γ5/2) > 0
Based  on  (16),  one  obtains  (1),  where 

, . ■  

V.  Proof of Lemma 2
Lemma 2: The time derivative of (16) is upper bounded, i.e.,

 

Γt (t) ≤ −αΓ (t)+ε (15)
α,ε > 0where .

Γ1 (t)Proof: The derivative of  along time is
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The  system  governing  equations  are  substituted  into  the  above
equality, it results that
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Integrating by parts and applying Young’s inequality, one has
 

Γ1t (t) ≤ axt (ℓ, t)
[
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+
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a
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σ1, σ2 > 0where  are constants.
Γ2 (t)The time derivative of  is

 

Γ2t (t) = amζ (t)ζt (t) ln
2b2

b2 − x2
s (ℓ, t)

+amη (t)ηt (t)

+
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2
ζ2 (t)

2xs (ℓ, t) xst (ℓ, t)
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s (ℓ, t)
+

a
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+
a
δ2

d̃y (t) d̃yt (t) . (19)

Combing the auxiliary signal (7), (8) with the boundary conditions
(4), (5), one gets
 

Γ2t (t) = aζ (t)
[
Ux (t)+dx (t)−T0 (ℓ) xs (ℓ, t)−2κ (ℓ)x3

s (ℓ, t)
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One the basis of the controllers (9), (10) and disturbance observers
(11), (12), it holds that
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By utilizing Young’s inequality yields
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Γ3 (t)Differentiating  in time is
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0
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B1 (t) B2 (t) B3 (t) B4 (t)where , ,  and  will be calculated in the follow-

ing, respectively.
B1 (t) = λρ

r ℓ
0 sxtt xsdsFor , substituting (1) into it, we obtain
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w ℓ
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Using integration by parts, one has
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B2 (t) = λρ
r ℓ

0 sxt xstds B4 (t) = λρ
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0 sytystdsFor  and ,  integrating
by parts, one gets
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Substituting (25)–(27) and (29) into (23), one has
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σ3,σ4,σ5 > 0where  are constants.
Γ4 (t)The time derivative of  is

 

Γ4t (t) = −γ3T̃0 (ℓ, t) T̂0t (ℓ, t)−γ4m̃ (t) m̂t (t)

−γ5ẼA (t) ÊAt (t) . (31)
Substituting the adaptive laws (13)−(15) into (31), one obtains

 

Γ4t (t) = aT̃0 (ℓ, t) xs (ℓ, t)ζ (t) ln
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Further, utilizing Young’s inequality, one gets
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ẼA (t)

2
x3

s (ℓ, t)
]
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2
T 2

0 (ℓ)+
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2
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2
EA2. (33)

According to (16), it is obtained that
 

Γt (t) = Γ1t (t)+Γ2t (t)+Γ3t (t)+Γ4t (t) (34)
Γt (t)With the combination of (18), (22), (30), and (33),  becomes

 

Γt (t) ≤ −ak1ζ
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2
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2

)
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−
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0

[
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2
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2
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8
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]
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− λ
2

w ℓ
0

[T0 (s)−T0s (s)−λℓσ4] x2
sds+
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2
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x (t)

−
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2
−
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2 −λℓEA

∣∣∣
σ6
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2
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s (ℓ, t)

−
[
2aκ (ℓ)+
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2
− 3λℓκ (ℓ)

2
−
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2
−λℓEA

∣∣∣∣∣σ6

−3λℓEA
8

]
x4

s (ℓ, t)−
(
λρ

2
−aσ1

)w ℓ
0

x2
t ds

−
(
λEA
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σ3
−λℓσ5

)w ℓ
0

y2
sds+

aγ2

2
d2

y (t)

−
(
λρ

2
−aσ2

)w ℓ
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t ds+

(
a
σ1
+
λℓ
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)w ℓ
0

f 2
x ds

+

(
a
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+
λℓ
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)w ℓ
0

f 2
y ds−

(
aγ1

2
− aσ3
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)
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2
(t)

−
(

aγ2

2
− aσ4
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)
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2
(t)+

a
δ1σ3

d2
xt (t)+

a
δ2σ4
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yt (t)

− ϕ1

2
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2
(ℓ, t)− ϕ2

2
m̃2 (t)− ϕ3

2
ẼA

2
(t)+

ϕ1

2
T 2

0 (ℓ)

+
ϕ2

2
m2 +

ϕ3

2
EA2 (35)

σ6 > 0 k2 k4 σi i = 1, . . . ,5where  is a constant and a, λ, ρ, , , ,  for  are
selected to satisfy the following conditions:
 

ak2 −λℓρ > 0 (36)
 

ak4 −λℓρ > 0 (37)
 

aT0 (ℓ)− λℓT0 (ℓ)
2

− ak2

2
> 0 (38)

 

aEA− λℓEA
2
−

∣∣∣ 3aEA
2 −λℓEA

∣∣∣
σ6

− ak4

2
> 0 (39)

 

2aκ (ℓ)+
aEA

2
− 3λℓκ (ℓ)

2
− 3λℓEA

8

−
∣∣∣∣∣3aEA

2
−λℓEA

∣∣∣∣∣σ6 > 0 (40)
 



τ1 =
λρ

2
−aσ1 > 0 (41)

 

τ2 =
λρ

2
−aσ2 > 0 (42)

 

τ3 = T0 (s)−T0s (s)−λℓσ4 > 0 (43)
 

τ4 =
λEA

2
− λEA
σ3
−λℓσ5 > 0 (44)

 

τ5 =
3λ
2
κ (s)+λsκs (s)+

3λEA
8
−λEAσ3 > 0 (45)

 

τ6 =
aγ1

2
− aσ3

δ1
> 0 (46)

 

τ7 =
aγ2

2
− aσ4

δ2
(47)

 

0 < ε =
(

a
σ1
+
λℓ

σ4

)
ℓ f 2

1 +

(
a
σ2
+
λℓ

σ5

)
ℓ f 2

2 +
aγ1

2
d2

1

+
aγ2

2
d2

2 +
a
δ1σ3

d2
3 +

a
δ2σ4

d2
4 +
ϕ1

2
T 2

0 (ℓ)

+
ϕ2

2
m2 +

ϕ3

2
EA2 < +∞. (48)

Applying (36)−(48) on (35), it follows that:
 

Γt (t) ≤ −τ1
w ℓ

0
x2

t ds−τ2
w ℓ

0
y2

t ds−τ3
w ℓ

0
x2

sds−τ4
w ℓ

0
y2

sds

−τ5
w ℓ

0
x4

sds−ak1ζ
2 (t) ln

2b2

b2 − x2
s (ℓ, t)

−ak3η
2 (t)

−
(

aγ1

2
− aσ3

δ1

)
d̃x

2
(t)−

(
aγ2

2
− aσ4

δ2

)
d̃y

2
(t)

− ϕ1

2
T̃0

2
(ℓ, t)− ϕ2

2
m̃2 (t)− ϕ3

2
ẼA

2
(t)+ε

≤ − α3

[
Π (t)+Γ2 (t)+ T̃0

2
(ℓ, t)+ m̃2 (t) + ẼA

2
(t)

]
+ε (49)

where α3 =min {τ1, τ2, τ3, τ4, τ5, 2k1/m, 2k3/m, 2δ1τ6/a, 2δ2τ7/a,
ϕ1/2,ϕ3/2}. Thus, together with (6) and (49), one further obtains
 

Γt (t) ≤ −αΓ (t)+ε (50)
α = α3/α2 > 0where . ■  

VI.  Proof of Theorem 1

|T (ℓ, t)| < TM , ∀t ∈ [0,∞)

Theorem 1: For  coupled strings represented by (1),  (2)  and boun-
dary  conditions  (3)−(5),  under  Assumption  1  and  adaptive  control
protocols (9),  (10)  with  disturbance  observers  (11),  (12)  and  adap-
tive  laws  (13)−(15),  we  can  conclude  that  all  signals  of  the  system
are bounded,  the  boundary  tension  of  the  string  satisfies  the  con-
straint ,  the  boundary  disturbances  are
effectively  restrained  and  the  closed-loop  system  is  uniformly
bounded stable.

eαtProof: Multiplying (15) by  gives
 

Γt (t)eαt ≤ −αΓ (t)eαt +εeαt. (51)
The above equation is equivalent to

 

∂

∂t

(
Γ (t)eαt

)
≤ εeαt. (52)

Then, integrating (52) with respect to t from 0 to t
 

Γ (t) ≤
(
Γ (0)− ε

α

)
e−αt +

ε

α
≤ Γ (0)e−αt +

ε

α
(53)

Γ (t)which infers  is bounded. Applying Young’s inequality and com-
bining (17) with (21), we obtain
 

aT0

2ℓ
x2 (s, t) ≤ a

2

w ℓ
0

T0 (s) x2
s (x, t)ds

≤ Γ1 (t) ≤ Γ1 (t)+Γ2 (t) ≤ 1
α1
Γ (t) (54)

 

aEA
2ℓ

y2 (s, t) ≤ aEA
2

w ℓ
0

y2
s (x, t)ds

≤ Γ1 (t) ≤ Γ1 (t)+Γ2 (t) ≤ 1
α1
Γ (t) . (55)

x (s, t) y (s, t)
Rearrange  the  terms  in  the  above  inequality  appropriately.  It  is

obtained that  and  are bounded, that is
 

|x (s, t)| ≤
√

2ℓ
aα1T0

(
V (0)+

ε

α

)
(56)

 

|y (s, t)| ≤

√
2ℓ

aα1EA

(
V (0)+

ε

α

)
(57)

∀ (s, t) ∈ [0, ℓ]× [0,∞). Further, we derive
 

lim
t→∞
|x (s, t)| ≤

√
2ℓε

aTα1α
(58)

 

lim
t→∞
|y (s, t)| ≤

√
2ℓε

aEAα1α
(59)

∀ (s, t) ∈ [0, ℓ]× [0,∞) .
Γ1 (t)

∀t ∈ [0,∞) Γ1 (t) xt (s, t) xs (s, t) yt (s, t)
ys (s, t) ∀ (s, t) ∈ [0, ℓ] × [0,∞)

xst (s, t) yst (s, t)

xss (s, t) yss (s, t)

xtt (s, t) ytt (s, t)
T̃0 (ℓ, t) m̃ (t) ẼA (t)

T̂0 (ℓ, t) m̂ (t) ÊA (t)
Ux (t) Uy (t)

Ux (t) Uy (t)

From the two inequalities (54), (55), we see that  is bounded
.  Since  is  bounded, , ,  and

 are  bounded  .  From  (1),  the  kinetic
energy of the system is bounded, it follows that  and 
are  also  bounded  by  utilizing  property  1.  Similarly,  it  follows  from
(2) and property 1 that  and  are also bounded. Then,
utilizing  Assumption  1,  system  governing  equations,  by  means  of
boundary conditions and the above analysis, it  is easy to obtain that

 and  are also bounded. In addition, From (53), we have
parameter  estimation  errors , ,  and  are  bounded.
Thus, , , and  are bounded. In conclusion, adaptive
boundary control controllers  and  we designed are boun-
ded.  In  summary,  the  proposed  two  adaptive  boundary  controllers

 and  guarantee that  all  signals in the closed-loop system
are bounded.

Γ2 (t) Γ2 (t) →∞
|xs (ℓ, t)| → b Γ2 (t)
|xs (s, t)| , b −b < xs (ℓ,0) < b
−b < xs (ℓ, t) <b ∀t ∈ [0,∞)

−TM < T (ℓ, t) < TM ∀t ∈ [0,∞)
T (ℓ, t)

From the definition of , it is easy to see that   when
.  By  (53),  we  know  that  is  bounded,  so

.  Considering ,  we  further  deduce  that
,  . Together with the tension expression, it

is  clear  that  holds  on , so  the  bound-
ary tension  satisfies the constraint. ■  

VII.  Four Remarks

dx (t) dy (t) T0 (ℓ)

Remark  1: The  main  tool  utilized  in  this  paper  is  the  estimation-
based adaptive constraint control method. Since this paper considers
the case where the system has unknown boundary perturbations and
unknown  system  parameters,  two  disturbance  observers  and  three
parameter adaptive laws are designed to estimate the unknown boun-
dary  perturbations ,  and  unknown  parameters , m,
EA,  respectively.  In  addition,  the  boundary  tension  constraint  prob-
lem of the system is also considered and the logarithmic BLF is selec-
ted to deal with it. Therefore, this paper effectively solves the vibrati-
on suppression problem of the transverse-longitudinal coupled string
system using the estimation-based adaptive constraint control method.

T0 (ℓ) EA
ϕ1 ϕ2

ϕ3
T̂0 (ℓ, t) m̂ (t) ÊA (t)

Remark 2: In this paper, the unknown parameters , m and 
are considered. To solve this problem, the modification terms , ,
and  in (13)−(15) are introduced to improve the robustness of  the
closed-loop system, which are used to regulate , , ,
respectively, to avoid their fluctuation to very large values that may
affect the control scheme.

x (s, t) y (s, t)

α3 k1, k3 α3
α√

2ℓε/aTα1α
√

2ℓε/aEAα1α

k1, k3

Remark 3: From the above analysis, it can be seen that the system
states  and  can be arbitrarily small as long as the design
control parameters are properly chosen. According to the expression
of , it is clear that the increase of control gains  may cause 
to  increase.  Then,  the  value  of  will  increase,  which  eventually
makes  and  decrease,  i.e.,  it  can give a
better  vibration  reduction  performance.  But,  it  will  generate  a  high
gain  control  scheme  by  increasing .  Therefore,  in  practical
engineering, to achieve good vibration reduction performance and to
obtain an optimized control scheme, the design parameters should be
carefully adapted.

x (ℓ, t) y (ℓ, t)
xs (ℓ, t) ys (ℓ, t)

xt (ℓ, t) yt (ℓ, t) xst (ℓ, t)
yst (ℓ, t)
x (ℓ, t) y (ℓ, t) xs (ℓ, t) ys (ℓ, t)

Remark 4: All signals of the adaptive boundary controllers (9) and
(10) can be obtained by backward difference algorithm or by sensor
measurements.  and  are measured by laser displacement
sensor  at  the  boundary  of  the  string  and  and  are
obtained by inclinometer.  Furthermore, , , ,  and

 are  calculated  using  the  backward  difference  algorithm  for
, , , , respectively.
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