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I. LIST OF MATERIALS

This PDF file includes the following materials.
1) Contributions;

2) Dynamics Analysis;

3) Proof of Lemma 1;

4) Proof of Lemma 2;

5) Proof of Theorem 1;

6) Four Remarks;

II. CONTRIBUTIONS

The main contributions of this paper are listed below:

1) Compared to [16], the tension on the string system studied in
this paper is a spatiotemporally varying function. The boundary ten-
sion of the string is constrained by applying the logarithmic BLF to
ensure that the boundary tension remains within the constraint range
T (£,0)| < Ty

2) A common solution to deal with unknown boundary distur-
bances is to apply symbolic functions, which is a relatively simple
method. However, since the symbolic function has discontinuity, the
controller constructed based on it may have chattering phenomenon.
Incorporating the Lyapunov function, two disturbance observers are
designed to estimate unknown boundary disturbances in this paper,
which avoid the chattering phenomenon induced by the sign func-
tion.

3) The case of unknown parameters of the string system is consid-
ered, and the adaptive method is utilized to compensate the uncer-
tainty of system. Two adaptive boundary controllers are designed to
effectively mitigate string vibrations.

III. DYNAMICS ANALYSIS

Analyzing the coupled string system from the dynamics perspec-
tive, the kinetic energy Ej (f) and the potential energy E, () of the
string system are expressed as
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The virtual work done by distributed disturbances fy (s,?), fy(s,1)
on the string and boundary disturbances d (¢), dy () on the tip pay-
load can be expressed as
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In order to restrain the vibrations, boundary control forces Uy (¢),
Uy (¢) are imported at the boundary of the string. The virtual work

done by the control is given by
W (1) = Ux (1) 0x(£,0) + Uy (D) 0y (€, ). “)
Therefore, the total virtual work done on the system is described as
SW (1) = Wy (1) +6W,, (1) ®)

Through the application of Hamilton’s principle fttlzé (Ex —Ep+
W)dt =0, t; <t <1, the governing equations (1), (2) and boundary
conditions (3)—(5) of the coupled string system are obtained after a
series of lengthy and straightforward calculations.

IV. PROOF OF LEMMA 1

Lemma 1: The upper and lower bounds of the Lyapunov function
given by (16) are

0<a [H(t) +To (D) +To> (L.1)+ T2 (1) + EA” (t)]
<T(H)<m [H(t) +To () +To> (L1)+ 2 (1) + EA” (z)] )

where a1,a7 >0and I1(r) = fof (xt2 +y2 + 22 +y? +x‘§)ds.
Proof: According to Young’s inequality and the inequality
Zy% (s,0) < x% (s,1), we obtain
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where o >0 is a constant. Furthermore, by the definition of I' (¢),
one has
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where o satisfies
To(6)>0

EA
T()(f)—g >0

K(€)+EA(%—0')>O ©)

K(f)+EA(% +0') > 0.

Thus, we have
0<w () <Ty (1) < wrII (1) (10)
where w; = (a/z)min[p, Ty - EA/20, EA, k + EA((1/4)—0')] >0,
w; = (a/2)max [p, To, K+EA(1+ l/cr),EA(l/4+0')] > 0.
Using Young’s inequality for (19), one obtains
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|r3(z)|sxlpff0 (2 +22+y2 +y2)ds <OT1(1) (11)
where 6 = Ap¢, thus (11) is equivalent to
—0111(¢) < T3 () < 6111(2). 12)

Accounting for 4 is a small positive weighting constant that satis-
fies 0 < A < w1 /pl, thereby 0 < 0; < w1, and

bh=w;—61=0
{93 =wy+6; >0. (13)

Combining (10), (12) with (13), one gets
0<6I(1) <T; (1) +T5(1) < 6311(r). (14)
Based on (16), one obtains (1), where a; =min(6,1,y3/2,d
¥4/2,y5/2) > 0, @z = max(63,1,¥3/2,y4/2,y5/2) > 0. u

V. PROOF OF LEMMA 2
Lemma 2: The time derivative of (16) is upper bounded, i.c.,
Iy <—-all(®+e (15)
where a,& > 0.
Proof: The derivative of I'j (¢) along time is
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The system governing equations are substituted into the above
equality, it results that
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Integrating by parts and applying Young’s inequality, one has
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where o1, o, > 0 are constants.
The time derivative of I'; (¢) is
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Combing the auxiliary signal (7), (8) with the boundary conditions
(4), (5), one gets
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One the basis of the controllers (9), (10) and disturbance observers
(11), (12), it holds that
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By utilizing Young’s inequality yields
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Differentiating I'3 (¢) in time is
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where By (), B, (t), B3 () and B4 (t) will be calculated in the follow-
ing, respectively.
For By (¥) = Ap f(f sxyxsds, substituting (1) into it, we obtain
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Using integration by parts, one has
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For By()=Ap fo sxixgds and By (1) = Ap fof syysids, integrating
by parts, one gets
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For B3 (¢) = Ap fo sy,,ysds, from the governing equation (2), it has
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Substituting (25)—(27) and (29) into (23), one has
ATy (¢ ACEA
I3 (1) < g( ) 2ty + + =N o+ 2L
3¢k(f)  3MCEA
+ +
2 8

x, (.0

] X 2 y,w 1)

Ap
0 x,zds—j yids

¢ 20, Ao
3 )y 06 =Tos () Aoa] s+ jo flds

- IO(] [zk(s) - /—lSKS (s)+ 3AEA

+ ACEAX (£,0)ys (€,1) — 7;)

~ AEAc3 | x}
2 2 3 A 0'3]de5‘

(/IEA - @ - 0'5)j0€y§ds+ i—i f;fyzds
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The time derivative of T'4 (7) is
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Substituting the adaptive laws (13)—(15) into (31), one obtains
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Further, utilizing Young’s inequality, one gets
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where o¢ > 0 is a constant and a, 4, p, ko, kg4, 0, fori=1,...,

selected to satisfy the following conditions:
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Applying (36)—(48) on (35), it follows that:
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where a = az/ap > 0.

VI. PROOF OF THEOREM 1

Theorem 1: For coupled strings represented by (1), (2) and boun-
dary conditions (3)—(5), under Assumption 1 and adaptive control
protocols (9), (10) with disturbance observers (11), (12) and adap-
tive laws (13)—(15), we can conclude that all signals of the system
are bounded, the boundary tension of the string satisfies the con-
straint |T (€,1)| < Ty, VYt €[0,00), the boundary disturbances are
effectively restrained and the closed-loop system is uniformly
bounded stable.

Proof: Multiplying (15) by e* gives
I (D) e™ < —aT (1) e + ge® 51)
The above equation is equivalent to
g (T e™) < ze™. (52)
Then, integrating (52) with respect to ¢ from 0 to ¢
r(t)s(r(O)—g)e*“ug sF(O)e"”+C—i (53)

which infers I'(7) is bounded. Applying Young’s inequality and com-
bining (17) with (21), we obtain
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Rearrange the terms in the above inequality appropriately. It is
obtained that x(s,7) and y (s, ) are bounded, that is

&
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PAs IS aalEA a
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From the two inequalities (54), (55), we see that I'; (¢) is bounded
Vt€[0,00). Since T'j(¢) is bounded, x;(s,?), x5(s,t), y;(s,¢) and
ys(s,t) are bounded VY (s,t) € [0,£] x[0,00). From (1), the kinetic
energy of the system is bounded, it follows that xy (s,#) and yg (s,f)
are also bounded by utilizing property 1. Similarly, it follows from
(2) and property 1 that x4 (s,7) and ys,(s,7) are also bounded. Then,
utilizing Assumption 1, system governing equations, by means of
boundary conditions and the above analysis, it is easy to obtain that
Xy (s,1) and yy (s,1) are also bounded. In addition, From (53), we have
parameter estimation errors TO (¢,1), m(t), and EA (¢) are bounded.
Thus, T (¢,1), m(r), and EA (t) are bounded. In conclusion, adaptive
boundary control controllers U, (¢) and Uy (r) we designed are boun-
ded. In summary, the proposed two adaptive boundary controllers
U (t) and Uy (1) guarantee that all signals in the closed-loop system
are bounded.

From the definition of I'; (¢), it is easy to see that ', (f) — co when
lxs (6,1)) > b. By (53), we know that I';(r) is bounded, so
|xs(s,0)| # b. Considering —b < x5(€,0) < b, we further deduce that
—b < x5(L,1) <b, ¥t € [0,00). Together with the tension expression, it
is clear that —Ty; < T ({,1) < Tps holds on Vr € [0,0), so the bound-
ary tension 7 ({,1) satisfies the constraint. |

VII. FOUR REMARKS

Remark 1: The main tool utilized in this paper is the estimation-
based adaptive constraint control method. Since this paper considers
the case where the system has unknown boundary perturbations and
unknown system parameters, two disturbance observers and three
parameter adaptive laws are designed to estimate the unknown boun-
dary perturbations dy(¢), dy(t) and unknown parameters T (£), m,
EA, respectively. In addition, the boundary tension constraint prob-
lem of the system is also considered and the logarithmic BLF is selec-
ted to deal with it. Therefore, this paper effectively solves the vibrati-
on suppression problem of the transverse-longitudinal coupled string
system using the estimation-based adaptive constraint control method.

Remark 2: In this paper, the unknown parameters T (£), m and EA
are considered. To solve this problem, the modification terms ¢, ¢,
and ¢3 in (13)—(15) are introduced to improve the robustness of the
closed-loop system, which are used to regulate To 1), m), EA®),
respectively, to avoid their fluctuation to very large values that may
affect the control scheme.

Remark 3: From the above analysis, it can be seen that the system
states x(s,7) and y(s,f) can be arbitrarily small as long as the design
control parameters are properly chosen. According to the expression
of a3, it is clear that the increase of control gains k, k3 may cause a3
to increase. Then, the value of @ will increase, which eventually
makes V20e/aTaya and V2ls/aEAaa decrease, i.e., it can give a
better vibration reduction performance. But, it will generate a high
gain control scheme by increasing k;, k3. Therefore, in practical
engineering, to achieve good vibration reduction performance and to
obtain an optimized control scheme, the design parameters should be
carefully adapted.

Remark 4: All signals of the adaptive boundary controllers (9) and
(10) can be obtained by backward difference algorithm or by sensor
measurements. x(¢,7) and y(¢,t) are measured by laser displacement
sensor at the boundary of the string and x;(¢,7) and ys(¢,f) are
obtained by inclinometer. Furthermore, x;(¢,1), y: ((,1), x5 (€,1), and
vst (€,1) are calculated using the backward difference algorithm for
x(€,1), y(,1), xs(L,1), ys (£,1), respectively.
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