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I.  MOEAs for MOPs With Irregular PFs

In  this  section,  we  are  going  to  provide  an  overview  of
existing  MOEAs  dedicated  to  solving  MOPs  with  irregular
PFs.  Here,  the  MOPs  are  categorized  into  four  groups
according to their main mechanism for handling irregularity in
the PF. 

A.  Fixed Vector Based MOEAs
The  fixed  vector  based  MOEAs  for  MOPs  with  irregular

PFs are summarized in Table SI. 

B.  Reference Vector Adjustment Based MOEAs
The  reference  vector  adjustment  based  MOEAs  for  MOPs

with irregular PFs are summarized in Table SII. 

C.  Reference Point Based MOEAs
The reference point based MOEAs for MOPs with irregular

PFs are summarized in Table SIII. 

D.  Grid or Clustering Based MOEAs
The  grid  or  clustering  based  MOEAs  for  MOPs  with

irregular PFs are summarized in Table SIV.
 

TABLE SI  
Summary of Fixed Vector Based MOEAs for Irregular PFs

MOEA Auxiliary methods

BCE-MOEA/D [1] Two populations evolve based on non-dominated sorting and decomposition in parallel

MOEA/D-AED [2] Non-dominated individuals with small Chebyshev function value are stored in an external archive

MOEA/D-SAS [3] Select more than one individual by one reference vector. The individuals in each sub-problem are sorted first according to
their fitness value, and then according to the angles between other individuals

ASEA [4] Select more than one individual by one reference vector. The individuals in each sub-problem are first sorted by
convergence, and then by an angle based crowding degree evaluation method

PAEA [5] Using two fixed reference vector sets using the ideal point and the nadir point as the origin respectively. PBI and inverted
PBI scalarizing functions are simultaneously used

MOEA/AD [6] Using two fixed reference vector sets using the ideal point and the nadir point as the origin respectively. PBI and an
augmented achievement scalarizing function (AASF) are adopted for each set of the reference vectors

MOEA/D-MR [7] Using two fixed reference vector sets using the ideal point and the nadir point as the origin, respectively. An archive is used
to store non-dominated individuals

MOEA/D-TPN [8] Two fixed reference vector sets using the ideal point and the nadir point as the origin respectively are used in two stages

DBEA-DS [9] Two sets of solutions are obtained in each generation with two sets of reference directions. Only one set of solution of the
least fitness value will survive.

 

 

TABLE SII  
Summary of Reference Vector Adjustment Based MOEAs for Irregular PFs

MOEA Reference vector adjustment Adjustment criterion

Utilizing solutions to generate reference vectors

MOEA/D-AWA [10] Crowded reference vectors will be deleted and new reference vectors will be added
in sparse regions using the solutions in the archive

Every several generations after a
number of fixed generations

FV-MOEA/D [11] Use the solutions in an archive to generate new reference vectors Every several generations

AdaW [12] A set of solutions are picked up from the archive to generate the corresponding
weight vectors,delete poor weight vectors Every several generations

MOEA/D-URAW [13] Add weight vectors to sparse areas and delete weight vectors in crowded areas Every generation after a number of
fixed generations

E-IM-MOEA [14] Generation the reference vectors using the solutions in the archive Every generation at the late stage of the
search process

EARPEA [15] New reference vectors generated by selecting solutions from the non-dominated
solutions from the current population according to the cosine distance

Every generation if the number of
active reference vectors is insufficient



Table SII (Continued)
MOEA Reference vector adjustment Adjustment criterion

[16] Use solutions both in the archive and in the current population as the candidate
reference vectors

Every generation after a number of
fixed

VaEA [17] Individuals with larger angle with the selected individual vectors are selected as
vectors

Every generation

LC-MaOEA [18] The cluster center vectors generated by clustering the individuals mapped on the
hyperplane are used as the reference vectors

Only once after the active

MOEA/D-AM2M [19] Reference vectors are generated by picking up a solution vector with the biggest
angle to the existing reference vectors

Every several generations after a
number of fixed generations

EMOSA [20] Ajusting weight vectors to make each individual away from its nearest neighbor Every several generations if the lowest
temperature is reached

APA [21] The solutions contributing more to the hypervolume of the current population will
be picked up to generate the reference vectors Every generation

g-DBEA [22] An inactive reference vector is replaced by the solution with the maximum angle
to its neighbouring reference vectors with more than one solution attached to

Every generation

iRVEA [23] Selecting solution vectors having the largest cosine distance to the existing active
reference vectors to replace the inactive reference vectors

Every generation

Adjusting reference vectors using existing ones

TPEA-PBA [24] New reference vectors are generated by disturbing the “good” reference vectors
based on the penalty values Only once in final 50 generations

MaOEA/D-2ADV [25] Inactive reference vectors are replaced by the interpolation between active
reference vectors based on the Euclidean distance between the reference vectors

Every several generations

MOEA/D-ABD [26]
The weight vectors are divided into two sets according to whether they have
intersections with the PFs and are adjusted using different step sizes accordingly
within each discontinuous segment of PFs

Every several generations after the
endpoints of each discontinuous region
of the PFs are detected

A-NSGA-III [27] Reference vectors are sampled around the promising reference vectors whose
niche count is more than one

Every generation

A2-NSGA-III [28] Reference vectors are sampled around the promising reference vectors whose
niche count is more than one

Every generation

AMOEA/D [29] Remove invalid reference points and add several points around crowded reference
point

Every several generations after
indicator MDP is satisfied

NSGA-MPBI [30] Denser reference vectors are generated until the number of active reference vectors
is larger than the population size

Every several generations

Learning the distribution of PFs
MOEA/D-SOM [31],

M2M-SOM
Use the self-organising map (SOM) network to learn the topology of PFs, the
nodes of the SOM serve as the positions of the reference vectors Every generation

DEA-GNG [32] Reference vectors are adjusted according to the topology of the PFs obtained by
training a growing neural gas (GNG) network

Every generation

RVEA-iGNG [33] An improved GNG (iGNG) is designed for adapting the reference vectors Every generation

CLIA [34] Delete inactive reference vectors detected by incremental support vector machine
method, add vectors around active vectors

Every generation

Adaptive MOEA/D [35] Reference vectors in different subregions are assigned based on the complexity of
each region

Every several generations

MOEA/D-AWG [36] Reference vectors are uniformly sampled on PFs learned by Gaussian process
regression models

Every several generations after a
number of fixed generations

MOEA/D-LTD [37] Reference vectors are uniformly sampled on PFs learned by Gaussian process
regression models

Every several generations after a
number of fixed generations

PICEA-w [38] The solutions in the population are coevolved with the reference vectors Every generation
 

 

TABLE SIII  
Summary of Reference Point Based MOEAs for Irregular PFs

MOEA Reference point adjustment Adjustment
criterion

Adjusting reference points using existing ones

AR-MOEA [39] Add the individuals with the largest angle from active reference points as new reference points, and delete
inactive reference points Every generation

AREA [40] Add the projection of the individuals in the archive furthest from the current population as a new reference point,
and remove the reference points with the worst index

Every several
generations

Utilizing individuals to generate reference points

RPEA [41] Individuals with the largest crowding distances are chosen to generate reference points by reducing the
corresponding objective values

Every several
generations

CA-MOEA [42] Clustering individuals and calculating the cluster centers as reference points Every generation
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