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Fig. S1 illustrates the network structures of the policy and the soft
Q-function. The actor network functions as the parameterized policy,
while the parameterized soft Q-function serves as the critic network.

Fig. S2 displays the architecture of the proposed DRL-based esti-
mator.

Fig. S3 shows the simulated target tracking geometry for a con-
stant-velocity target.

Fig. S4 presents the learning curves of the proposed estimator.

Proof of Lemma 1: Introduce a reward function augmented with
entropy
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Therefore, the soft Bellman backup operation can be reformulated
as

T7Qsi,&) = ra(si€) +VE,, _pp. [0Gsi1, D] (S.3)

Given |A|l=—-dim(&) and « < oo, the second term in (S.1) is
bounded. Note that noise is ubiquitous in measurements, which
implies that the reward r(s;,&;) is inherently bounded. Thus, there
exist rpin and ryax such that 7 € [riyin, rmax ], and further, |r,,(s,~,£,~)| <
7 with 7 = max{|rminl, |rmax|}. Since

Or(si,&) = 1a(si,&) +E[Z Yira(sivj € )8 =5, A; = &1 (S4)
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Fig. S1. Actor and critic network structures. (a) Actor network; (b) Critic network.
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Fig. S2. The architecture of the proposed DRL-based estimator.
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Fig. S3. The simulated tracking scenario with a constant-velocity target.

10x(s €)lleo < IL
-

where [|Qx(s,€)llco = maxs,g|Qn(Své)|. Hence, the Q-value is bounded

in co-norm. For any two vectors 0, 0’ € RSX | we have the follow-
ing contraction proof for 77:

IT7Q =T Q lleo = lra(si: &) +VBq, | _p(s,, 15, 29| QSi157)]
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(S.5)

Sit+1
< D Qsi1,) = Q' (sis1, Moo Psisalsis )
Si+1
=10 - Q'llco- (S.6)

By Banach fixed-point theorem, the soft Bellman backup operator
is a y-contraction. Therefore, iterative soft policy evaluation will con-
verge on the unique fixed point of 77”. Since 77Q, = Q, is a fixed
point, so that iterative policy evaluation converges on Q, i.e., the
sequence O will converge to Q as k — co. In light of this, Lemma 1
is confirmed. |

Proof of Lemma 2: Let Q™ and V™l be the corresponding soft
state-action value and soft state value with myq € IT. Define myey as

Tnew(:s)) = arg  Dgr (' (1s)|lexp(Q™(s;,-)) —log Z™(s;)))
minn’ €Il
= arg Jﬂold(”’("si)) (S7)
minzn’ €Il

Since we can always choose mpew = olq € I, there must exist
Jﬂold(ﬂnew('lsi)) < Jﬂold(ﬂold('lsi))- Hence, we have
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Fig. S4. Learning curves of the proposed estimator at training. The solid lines
correspond to the mean and the shaded regions depicts the mean + the stan-
dard deviation over ten different runs.

B, oo 102 Tnew (&ilsi) — Q7 (s;, &) +1og Z74 ()]
< B [102701a(Eilsi) — Q70 (51,87) +10g Z7(s)]. (S.8)

It is noted that the partition functon Z™d depends only on the state.
Therefore the inequality reduces to

Eg,.~,,new[Q"°‘d(Si,$i) —log mtnew(&lsi)] > V7l (s)).
Then, consider the soft Bellman equation
Q™M (s1.£1) = r(si.£) + VB ~pl V™ (s121)]
< 1(5i, &) + VB ~p B, oo [Q7 (i1, Eir1)
~log new(€)1]

(S.9)

~TTnew

< Q™ (si, &) (5.10)
where we expand the Q™ repeatedly by applying the soft Bellman
equation and the bound in (S.9). The convergence to Q™ can be
inferred from Lemma 1. Consequently, Lemma 2 holds. |

Proof of Theorem 1: Let m;, denote the policy at iteration .
Lemma 2 ensures the monotonic increase of the sequence Q™. Given
the bounded reward and entropy of Q7, the sequence m; converges to
some 7*. Upon convergence, J+(m*(-|s;)) < J+(7(-|s;)) holds for all
nmell and m# n*. Based on the proof of Lemma 2, we can establish
the following inequality:

Bp [0 (si,€) ~logm Eils)] > V7 (sy) (S.11)

which implies that Q7(s;,&) < Q" (s;,&) for any (s;,&)e SxA.
Therefore, it must be the case that 7* is optimal in I1. In summary,
Theorem 1 stands. |



