A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 8 Issue 9
Sep.  2021

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
F. Xu, H. S. Wang, "Soft Robotics: Morphology and Morphology-inspired Motion Strategy," IEEE/CAA J. Autom. Sinica, vol. 8, no. 9, pp. 1500-1522, Sep. 2021. doi: 10.1109/JAS.2021.1004105
Citation: F. Xu, H. S. Wang, "Soft Robotics: Morphology and Morphology-inspired Motion Strategy," IEEE/CAA J. Autom. Sinica, vol. 8, no. 9, pp. 1500-1522, Sep. 2021. doi: 10.1109/JAS.2021.1004105

Soft Robotics: Morphology and Morphology-inspired Motion Strategy

doi: 10.1109/JAS.2021.1004105
More Information
  • Robotics has aroused huge attention since the 1950s. Irrespective of the uniqueness that industrial applications exhibit, conventional rigid robots have displayed noticeable limitations, particularly in safe cooperation as well as with environmental adaption. Accordingly, scientists have shifted their focus on soft robotics to apply this type of robots more effectively in unstructured environments. For decades, they have been committed to exploring sub-fields of soft robotics (e.g., cutting-edge techniques in design and fabrication, accurate modeling, as well as advanced control algorithms). Although scientists have made many different efforts, they share the common goal of enhancing applicability. The presented paper aims to brief the progress of soft robotic research for readers interested in this field, and clarify how an appropriate control algorithm can be produced for soft robots with specific morphologies. This paper, instead of enumerating existing modeling or control methods of a certain soft robot prototype, interprets for the relationship between morphology and morphology-dependent motion strategy, attempts to delve into the common issues in a particular class of soft robots, and elucidates a generic solution to enhance their performance.

     

  • loading
  • [1]
    C. Majidi, “Soft robotics: A perspective—current trends and prospects for the future,” Soft Robot., vol. 1, no. 1, pp. 5–11, Mar. 2014. doi: 10.1089/soro.2013.0001
    [2]
    C. Laschi, B. Mazzolai, and M. Cianchetti, “Soft robotics: Technologies and systems pushing the boundaries of robot abilities,” Sci. Robot., vol. 1, no. 1, Article No. eaah3690, Dec. 2016. doi: 10.1126/scirobotics.aah3690
    [3]
    D. Rus and M. T. Tolley, “Design, fabrication and control of soft robots,” Nature, vol. 521, no. 7553, pp. 467–475, May 2015. doi: 10.1038/nature14543
    [4]
    J. Z. Gul, M. Sajid, M. M. Rehman, G. U. Siddiqui, I. Shah, K. H. Kim, J. W. Lee, and K. H. Choi, “3D printing for soft robotics-a review,” Sci. Technol. Adv. Mater., vol. 19, no. 1, pp. 243–262, Mar. 2018. doi: 10.1080/14686996.2018.1431862
    [5]
    P. Polygerinos, N. Correll, S. A. Morin, B. Mosadegh, C. D. Onal, K. Petersen, M. Cianchetti, M. T. Tolley, and R. F. Shepherd, “Soft robotics: Review of fluid-driven intrinsically soft devices; manufacturing, sensing, control, and applications in human-robot interaction,” Adv. Eng. Mater., vol. 19, no. 12, Article No. 1700016, Dec. 2017. doi: 10.1002/adem.201700016
    [6]
    T. Sénac, A. Lelevé, R. Moreau, C. Novales, L. Nouaille, M. T. Pham, and P. Vieyres, “A review of pneumatic actuators used for the design of medical simulators and medical tools,” Multimodal Technol. Interact., vol. 3, no. 3, Article No. 47, Jul. 2019. doi: 10.3390/mti3030047
    [7]
    H. Rodrigue, W. Wang, M. W. Han, T. J. Y. Kim, and S. H. Ahn, “An overview of shape memory alloy-coupled actuators and robots,” Soft Robot., vol. 4, no. 1, pp. 3–15, Mar. 2017. doi: 10.1089/soro.2016.0008
    [8]
    X. N. Cao, M. Q. Zhang, Z. Zhang, Y. Xu, Y. H. Xiao, and T. F. Li, “Review of soft linear actuator and the design of a dielectric elastomer linear actuator,” Acta Mech. Solida Sin., vol. 32, pp. 566–579, Oct. 2019. doi: 10.1007/s10338-019-00112-8
    [9]
    G. Y. Gu, J. Zhu, L. M. Zhu, and X. Y. Zhu, “A survey on dielectric elastomer actuators for soft robots,” Bioinspir. Biomim., vol. 12, Article No. 011003, Jan. 2017. doi: 10.1088/1748-3190/12/1/011003
    [10]
    S. G. Fitzgerald, G. W. Delaney, and D. Howard, “A review of jamming actuation in soft robotics,” Actuators, vol. 9, no. 4, Article No. 104, Oct. 2020. doi: 10.3390/act9040104
    [11]
    L. Hines, K. Petersen, G. Z. Lum, and M. Sitti, “Soft actuators for small-scale robotics,” Adv. Mater., vol. 29, no. 13, Article No. 1603483, Apr. 2017. doi: 10.1002/adma.201603483
    [12]
    T. G. Thuruthel, Y. Ansari, E. Falotico, and C. Laschi, “Control strategies for soft robotic manipulators: A survey,” Soft Robot., vol. 5, pp. 149–163, Apr. 2018. doi: 10.1089/soro.2017.0007
    [13]
    C. Y. Chu and R. M. Patterson, “Soft robotic devices for hand rehabilitation and assistance: A narrative review,” J. Neuroeng. Rehabil., vol. 15, no. 1, Article No. 9, Feb. 2018. doi: 10.1186/s12984-018-0350-6
    [14]
    M. Cianchetti, C. Laschi, A. Menciassi, and P. Dario, “Biomedical applications of soft robotics,” Nat. Rev. Mater., vol. 3, pp. 143–153, Jun. 2018. doi: 10.1038/s41578-018-0022-y
    [15]
    M. W. Gifari, H. Naghibi, S. Stramigioli, and M. Abayazid, “A review on recent advances in soft surgical robots for endoscopic applications,” Int. J. Med. Robot., vol. 15, no. 5, Article No. e2010, Oct. 2019.
    [16]
    W. S. Chu, K. T. Lee, S. H. Song, M. W. Han, J. Y. Lee, H. S. Kim, M. S. Kim, Y. J. Park, K. J. Cho, and S. H. Ahn, “Review of biomimetic underwater robots using smart actuators,” Int. J. Precis. Eng. Manuf., vol. 13, pp. 1281–1292, Jul. 2012. doi: 10.1007/s12541-012-0171-7
    [17]
    A. Raj and A. Thakur, “Fish-inspired robots: design, sensing, actuation, and autonomy—a review of research,” Bioinspir. Biomim., vol. 11, no. 3, Article No. 031001, Apr. 2016. doi: 10.1088/1748-3190/11/3/031001
    [18]
    R. Pfeifer, M. Lungarella, and F. Iida, “Self-organization, embodiment, and biologically inspired robotics,” Science, vol. 318, no. 5853, pp. 1088–1093, Nov. 2007. doi: 10.1126/science.1145803
    [19]
    E. J. Markvicka, M. D. Bartlett, X. N. Huang, and C. Majidi, “An autonomously electrically self-healing liquid metal-elastomer composite for robust soft-matter robotics and electronics,” Nat. Mater., vol. 17, pp. 618–624, Jul. 2018. doi: 10.1038/s41563-018-0084-7
    [20]
    Q. Shen, S. Trabia, T. Stalbaum, V. Palmre, K. Kim, and I. K. Oh, “A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation,” Sci. Rep., vol. 6, Article No. 24462, Apr. 2016. doi: 10.1038/srep24462
    [21]
    M. Wehner, R. L. Truby, D. J. Fitzgerald, B. Mosadegh, G. M. Whitesides, J. A. Lewis, and R. J. Wood, “An integrated design and fabrication strategy for entirely soft, autonomous robots,” Nature, vol. 536, no. 7617, pp. 451–455, Aug. 2016. doi: 10.1038/nature19100
    [22]
    L. Migliorini, T. Santaniello, Y. S. Yan, C. Lenardi, and P. Milani, “Low-voltage electrically driven homeostatic hydrogel-based actuators for underwater soft robotics,” Sens. Actuators B:Chem., vol. 228, pp. 758–766, Jun. 2016. doi: 10.1016/j.snb.2016.01.110
    [23]
    Y. Yekutieli, R. Sagiv-Zohar, R. Aharonov, Y. Engel, B. Hochner, and T. Flash, “Dynamic model of the octopus arm. I. Biomechanics of the octopus reaching movement,” J. Neurophysiol., vol. 94, no. 2, pp. 1443–1458, Aug. 2005. doi: 10.1152/jn.00684.2004
    [24]
    W. M. Kier and K. K. Smith, “Tongues, tentacles and trunks: The biomechanics of movement in muscular-hydrostats,” Zool. J. Linn. Soc., vol. 83, no. 4, pp. 307–324, Apr. 1985. doi: 10.1111/j.1096-3642.1985.tb01178.x
    [25]
    H. Shigemune, V. Cacucciolo, M. Cianchetti, H. Sawada, S. Hashimoto, and C. Laschi, “Effect of base rotation on the controllability of a redundant soft robotic arm,” in Proc. IEEE Int. Conf. Soft Robotics (RoboSoft), Livorno, Italy, 2018, pp. 350–355.
    [26]
    C. Laschi, M. Cianchetti, B. Mazzolai, L. Margheri, M. Follador, and P. Dario, “Soft robot arm inspired by the octopus,” Adv. Robot., vol. 26, no. 7, pp. 709–727, Apr. 2012. doi: 10.1163/156855312X626343
    [27]
    F. Renda, M. Giorelli, M. Calisti, M. Cianchetti, and C. Laschi, “Dynamic model of a multibending soft robot arm driven by cables,” IEEE Trans. Robotics, vol. 30, no. 5, pp. 1109–1122, Oct. 2014. doi: 10.1109/TRO.2014.2325992
    [28]
    F. Maghooa, A. Stilli, Y. Noh, K. Althoefer, and H. A. Wurdemann, “Tendon and pressure actuation for a bio-inspired manipulator based on an antagonistic principle,” in Proc. IEEE Int. Conf. Robotics and Autom. (ICRA), Seattle, WA, USA, 2015, pp. 2556–2561.
    [29]
    D. Trivedi, A. Lotfi, and C. D. Rahn, “Geometrically exact models for soft robotic manipulators,” IEEE Trans. Robot., vol. 24, no. 4, pp. 773–780, Aug. 2008. doi: 10.1109/TRO.2008.924923
    [30]
    Z. X. Xie, F. Y. Yuan, Z. M. Liu, Z. N. Sun, E. M. Knubben, and L. Wen, “A proprioceptive soft tentacle gripper based on crosswise stretchable sensors,” IEEE/ASME Trans. Mechatron., vol. 25, no. 4, pp. 1841–1850, Aug. 2020. doi: 10.1109/TMECH.2020.2993258
    [31]
    M. D. Grissom, V. Chitrakaran, D. Dienno, M. Csencits, M. Pritts, B. Jones, W. McMahan, D. Dawson, C. Rahn, and I. Walker, “Design and experimental testing of the octarm soft robot manipulator,” in Proc. SPIE 6230, Unmanned Systems Technology VIII, Florida, United States, 2006.
    [32]
    M. H. Li, R. J. Kang, D. T. Branson, and J. S. Dai, “Model-free control for continuum robots based on an adaptive kalman filter,” IEEE/ASME Trans. Mechatron., vol. 23, no. 1, pp. 286–297, Feb. 2018. doi: 10.1109/TMECH.2017.2775663
    [33]
    V. Falkenhahn, T. Mahl, A. Hildebrandt, R. Neumann, and O. Sawodny, “Dynamic modeling of bellows-actuated continuum robots using the Euler-Lagrange formalism,” IEEE Trans. Robot., vol. 31, no. 6, pp. 1483–1496, Dec. 2015. doi: 10.1109/TRO.2015.2496826
    [34]
    V. Falkenhahn, A. Hildebrandt, R. Neumann, and O. Sawodny, “Dynamic control of the bionic handling assistant,” IEEE/ASME Trans. Mechatron., vol. 22, no. 1, pp. 6–17, Feb. 2017. doi: 10.1109/TMECH.2016.2605820
    [35]
    M. Rolf and J. J. Steil, “Constant curvature continuum kinematics as fast approximate model for the Bionic Handling Assistant,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 2012, pp. 3440–3446.
    [36]
    T. Mahl, A. Hildebrandt, and O. Sawodny, “A variable curvature continuum kinematics for kinematic control of the bionic handling assistant,” IEEE Trans. Robot., vol. 30, no. 4, pp. 935–949, Aug. 2014. doi: 10.1109/TRO.2014.2314777
    [37]
    T. Mahl, A. E. Mayer, A. Hildebrandt, and O. Sawodny, “A variable curvature modeling approach for kinematic control of continuum manipulators,” in Proc. American Control Conf., Washington, DC, USA, 2013, pp. 4945–4950.
    [38]
    V. Falkenhahn, F. A. Bender, A. Hildebrandt, R. Neumann, and O. Sawodny, “Online TCP trajectory planning for redundant continuum manipulators using quadratic programming,” in Proc. IEEE Int. Conf. Advanced Intelligent Mechatronics (AIM), Banff, AB, Canada, 2016, pp. 1163–1168.
    [39]
    L. Toscano, V. Falkenhahn, A. Hildebrandt, F. Braghin, and O. Sawodny, “Configuration space impedance control for continuum manipulators,” in Proc. 6th Int. Conf. Autom., Robotics and Applications (ICARA), Queenstown, New Zealand, 2015, pp. 597–602.
    [40]
    A. D. Marchese, K. Komorowski, C. D. Onal, and D. Rus, “Design and control of a soft and continuously deformable 2D robotic manipulation system,” in Proc. IEEE Int. Conf. Robotics and Autom. (ICRA), Hong Kong, China, 2014, pp. 2189–2196.
    [41]
    A. D. Marchese, R. K. Katzschmann, and D. Rus, “Whole arm planning for a soft and highly compliant 2D robotic manipulator,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Chicago, IL, USA, 2014, pp. 554–560.
    [42]
    R. Mutlu, G. Alici, X. C. Xiang, and W. H. Li, “Electro-mechanical modelling and identification of electroactive polymer actuators as smart robotic manipulators,” Mechatronics, vol. 24, no. 3, pp. 241–251, Apr. 2014. doi: 10.1016/j.mechatronics.2014.02.002
    [43]
    L. Li, T. Jin, Y. Z. Tian, F. Yang, and F. F. Xi, “Design and analysis of a square-shaped continuum robot with better grasping ability,” IEEE Access, vol. 7, pp. 57151–57162, May 2019. doi: 10.1109/ACCESS.2019.2914124
    [44]
    M. M. Tonapi, I. S. Godage, A. M. Vijaykumar, and I. D. Walker, “Spatial kinematic modeling of a long and thin continuum robotic cable,” in Proc. IEEE Int. Conf. Robotics and Autom. (ICRA), Seattle, WA, USA, 2015, pp. 3755–3761.
    [45]
    M. M. Tonapi, I. S. Godage, and I. D. Walker, “Design, modeling and performance evaluation of a long and slim continuum robotic cable,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Chicago, IL, USA, 2014, pp. 2852–2859.
    [46]
    R. K. Katzschmann, A. D. Marchese, and D. Rus, “Autonomous object manipulation using a soft planar grasping manipulator,” Soft Robot., vol. 2, no. 4, pp. 155–164, Dec. 2015. doi: 10.1089/soro.2015.0013
    [47]
    R. K. Katzschmann, C. Della Santina, Y. Toshimitsu, A. Bicchi, and D. Rus, “Dynamic motion control of multi-segment soft robots using piecewise constant curvature matched with an augmented rigid body model,” in Proc. 2nd IEEE Int. Conf. Soft Robotics (RoboSoft), Seoul, Korea (South), 2019, pp. 454–461.
    [48]
    A. D. Marchese and D. Rus, “Design, kinematics, and control of a soft spatial fluidic elastomer manipulator,” The Int. J. Robotics Research, vol. 35, no. 7, pp. 840–869, Jun. 2016. doi: 10.1177/0278364915587925
    [49]
    R. V. Martinez, J. L. Branch, C. R. Fish, L. H. Jin, R. F. Shepherd, R. M. D. Nunes, Z. G. Suo, and G. M. Whitesides, “Robotic tentacles with three-dimensional mobility based on flexible elastomers,” Adv. Mater., vol. 25, no. 2, pp. 205–212, Jan. 2013. doi: 10.1002/adma.201203002
    [50]
    H. S. Wang, C. Wang, W. D. Chen, X. W. Liang, and Y. T. Liu, “Three-dimensional dynamics for cable-driven soft manipulator,” IEEE/ASME Trans. Mechatron., vol. 22, no. 1, pp. 18–28, Feb. 2017. doi: 10.1109/TMECH.2016.2606547
    [51]
    T. G. Thuruthel, E. Falotico, F. Renda, and C. Laschi, “Model-based reinforcement learning for closed-loop dynamic control of soft robotic manipulators,” IEEE Trans. Robot., vol. 35, no. 1, pp. 124–134, Feb. 2019. doi: 10.1109/TRO.2018.2878318
    [52]
    D. C. Rucker, B. A. Jones, and I. R. J. Webster III, “A geometrically exact model for externally loaded concentric-tube continuum robots,” IEEE Trans. Robot., vol. 26, no. 5, pp. 769–780, Oct. 2010. doi: 10.1109/TRO.2010.2062570
    [53]
    J. Linn, H. Lang, and A. Tuganov, “Geometrically exact Cosserat rods with Kelvin-Voigt type viscous damping,” Mech. Sci., vol. 4, pp. 79–96, Feb. 2013. doi: 10.5194/ms-4-79-2013
    [54]
    A. D. Marchese, R. Tedrake, and D. Rus, “Dynamics and trajectory optimization for a soft spatial fluidic elastomer manipulator,” Int. J. Robot. Res., vol. 35, no. 8, pp. 1000–1019, Jul. 2016. doi: 10.1177/0278364915587926
    [55]
    F. Renda, M. Cianchetti, M. Giorelli, A. Arienti, and C. Laschi, “A 3D steady-state model of a tendon-driven continuum soft manipulator inspired by the octopus arm,” Bioinspir. Biomim., vol. 7, no. 2, Article No. 025006, Jun. 2012. doi: 10.1088/1748-3182/7/2/025006
    [56]
    H. S. Wang, W. D. Chen, X. J. Yu, T. Deng, X. Z. Wang, and R. Pfeifer, “Visual servo control of cable-driven soft robotic manipulator,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Tokyo, Japan, 2013, pp. 57–62.
    [57]
    H. S. Wang, R. X. Zhang, W. D. Chen, X. Z. Wang, and R. Pfeifer, “A cable-driven soft robot surgical system for cardiothoracic endoscopic surgery: Preclinical tests in animals,” Surg. Endosc., vol. 31, pp. 3152–3158, Aug. 2017. doi: 10.1007/s00464-016-5340-9
    [58]
    R. L. Truby, C. D. Santina, and D. Rus, “Distributed proprioception of 3D configuration in soft, sensorized robots via deep learning,” IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 3299–3306, Apr. 2020. doi: 10.1109/LRA.2020.2976320
    [59]
    R. J. Kang, Y. Guo, L. S. Chen, D. T. Branson, and J. S. Dai, “Design of a pneumatic muscle based continuum robot with embedded tendons,” IEEE/ASME Trans. Mechatron., vol. 22, no. 2, pp. 751–761, Apr. 2017. doi: 10.1109/TMECH.2016.2636199
    [60]
    A. Firouzeh, M. Salerno, and J. Paik, “Stiffness control with shape memory polymer in underactuated robotic origamis,” IEEE Trans. Robot., vol. 33, no. 4, pp. 765–777, Aug. 2017. doi: 10.1109/TRO.2017.2692266
    [61]
    R. J. Webster III and B. A. Jones, “Design and kinematic modeling of constant curvature continuum robots: A review,” Int. J. Robot. Res., vol. 29, no. 13, pp. 1661–1683, Nov. 2010. doi: 10.1177/0278364910368147
    [62]
    B. A. Jones and I. D. Walker, “Kinematics for multisection continuum robots,” IEEE Trans. Robot., vol. 22, no. 1, pp. 43–55, Feb. 2006. doi: 10.1109/TRO.2005.861458
    [63]
    H. El-Hussieny, S. G. Jeong, and J. H. Ryu, “Dynamic modeling of a class of soft growing robots using euler-lagrange formalism,” in Proc. SICE Annu. Conf., Hiroshima, Japan, 2019, pp. 453–458.
    [64]
    T. G. Thuruthel, E. Falotico, M. Cianchetti, and C. Laschi, “Learning global inverse kinematics solutions for a continuum robot,” in Proc. Symp. Robot Design, Dynamics and Control, Udine, Italy, 2016, pp. 47–54.
    [65]
    G. S. Chirikjian and J. W. Burdick, “A modal approach to hyper-redundant manipulator kinematics,” IEEE Trans. Robot. Autom., vol. 10, no. 3, pp. 343–354, Jun. 1994. doi: 10.1109/70.294209
    [66]
    K. M. Digumarti, B. Trimmer, A. T. Conn, and J. Rossiter, “Quantifying dynamic shapes in soft morphologies,” Soft Robot., vol. 6, no. 6, pp. 733–744, Dec. 2019. doi: 10.1089/soro.2018.0105
    [67]
    T. Li, K. Nakajima, and R. Pfeifer, “Online learning for behavior switching in a soft robotic arm,” in Proc. IEEE Int. Conf. Robotics and Autom., Karlsruhe, Germany, 2013, pp. 1296–1302.
    [68]
    T. Li, K. Nakajima, M. Cianchetti, C. Laschi, and R. Pfeifer, “Behavior switching using reservoir computing for a soft robotic arm,” in Proc. IEEE Int. Conf. Robotics and Autom., Saint Paul, MN, USA, 2012, pp. 4918–4924.
    [69]
    M. Rolf and J. J. Steil, “Efficient exploratory learning of inverse kinematics on a bionic elephant trunk,” IEEE Trans. Neural Networks and Learning Systems, vol. 25, no. 6, pp. 1147–1160, Jun. 2014. doi: 10.1109/TNNLS.2013.2287890
    [70]
    M. Giorelli, F. Renda, M. Calisti, A. Arienti, G. Ferri, and C. Laschi, “Learning the inverse kinetics of an octopus-like manipulator in three-dimensional space,” Bioinspir. Biomim., vol. 10, Article No. 035006, May 2015. doi: 10.1088/1748-3190/10/3/035006
    [71]
    T. G. Thuruthel, E. Falotico, M. Cianchetti, F. Renda, and C. Laschi, “Learning global inverse statics solution for a redundant soft robot,” in Proc. 13th Int. Conf. Informatics in Control, Autom. and Robotics, Lisbon, Portugal, 2016, pp. 303–310.
    [72]
    M. Giorelli, F. Renda, M. Calisti, A. Arienti, G. Ferri, and C. Laschi, “Neural network and jacobian method for solving the inverse statics of a cable-driven soft arm with nonconstant curvature,” IEEE Trans. Robot., vol. 31, no. 4, pp. 823–834, Aug. 2015. doi: 10.1109/TRO.2015.2428511
    [73]
    M. Giorelli, F. Renda, G. Ferri, and C. Laschi, “A feed-forward neural network learning the inverse kinetics of a soft cable-driven manipulator moving in three-dimensional space,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Tokyo, Japan, 2013, pp. 5033–5039.
    [74]
    M. Dehghani and S. A. A. Moosavian, “Dynamics modeling of planar continuum robots by finite circular elements for motion control,” in Proc. AI & Robotics (IRANOPEN), Qazvin, Iran, 2015, pp. 1–6.
    [75]
    M. Dehghani and S. A. A. Moosavian, “Statics modeling of planar continuum robots using virtual energy method,” in Proc. 2nd RSI/ISM Int. Conf. Robotics and Mechatronics (ICRoM), Tehran, Iran, 2014, pp. 474–479.
    [76]
    J. Lock, G. Laing, M. Mahvash, and P. E. Dupont, “Quasistatic modeling of concentric tube robots with external loads,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Taipei, China, 2010, pp. 2325–2332.
    [77]
    F. Renda and C. Laschi, “A general mechanical model for tendon-driven continuum manipulators,” in Proc. IEEE Int. Conf. Robotics and Autom., St Paul, MN, USA, 2012, pp. 3813–3818.
    [78]
    D. C. Rucker and R. J. Webster III, “Statics and dynamics of continuum robots with general tendon routing and external loading,” IEEE Trans. Robot., vol. 27, no. 6, pp. 1033–1044, Dec. 2011. doi: 10.1109/TRO.2011.2160469
    [79]
    F. Renda, V. Cacucciolo, J. Dias, and L. Seneviratne, “Discrete Cosserat approach for soft robot dynamics: A new piece-wise constant strain model with torsion and shears,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), Daejeon, Korea (South), 2016, pp. 5495–5502.
    [80]
    F. Xu, H. S. Wang, K. W. S. Au, W. D. Chen, and Y. Z. Miao, “Underwater dynamic modeling for a cable-driven soft robot arm,” IEEE/ASME Trans. Mechatron., vol. 23, no. 6, pp. 2726–2738, Dec. 2018. doi: 10.1109/TMECH.2018.2872972
    [81]
    I. Tunay, “Spatial continuum models of rods undergoing large deformation and inflation,” IEEE Trans. Robot., vol. 29, no. 2, pp. 297–307, Apr. 2013. doi: 10.1109/TRO.2012.2232532
    [82]
    E. Tatlicioglu, I. D. Walker, and D. M. Dawson, “Dynamic modelling for planar extensible continuum robot manipulators,” in Proc. IEEE Int. Conf. Robotics and Autom., Rome, Italy, 2007, pp. 1357–1362.
    [83]
    C. Renaud, J. M. Cros, Z. Q. Feng, and B. T. Yang, “The Yeoh model applied to the modeling of large deformation contact/impact problems,” Int. J. Impact Eng., vol. 36, no. 5, pp. 659–666, May 2009. doi: 10.1016/j.ijimpeng.2008.09.008
    [84]
    W. S. Rone and P. Ben-Tzvi, “Continuum robot dynamics utilizing the principle of virtual power,” IEEE Trans. Robot., vol. 30, no. 1, pp. 275–287, Feb. 2014. doi: 10.1109/TRO.2013.2281564
    [85]
    F. Xu, H. S. Wang, J. C. Wang, K. W. S. Au, and W. D. Chen, “Underwater dynamic visual servoing for a soft robot arm with online distortion correction,” IEEE/ASME Trans. Mechatron., vol. 24, no. 3, pp. 979–989, Jun. 2019. doi: 10.1109/TMECH.2019.2908242
    [86]
    P. Jung, S. Leyendecker, J. Linn, and M. Ortiz, “Discrete Lagrangian mechanics and geometrically exact Cosserat rods,” in Proc. Multibody Dynamics, ECCOMAS Thematic Conf., Warsaw, Poland, 2009.
    [87]
    S. S. Antman, Nonlinear Problems of Elasticity. New York: Springer-Verlag, 1995.
    [88]
    D. C. Rucker and R. J. Webster, “Computing Jacobians and compliance matrices for externally loaded continuum robots,” in Proc. IEEE Int. Conf. Robotics and Autom., Shanghai, China, 2011, pp. 945–950.
    [89]
    J. Till, V. Aloi, and C. Rucker, “Real-time dynamics of soft and continuum robots based on Cosserat rod models,” Int. J. Robot. Res., vol. 38, no. 6, pp. 723–746, May 2019. doi: 10.1177/0278364919842269
    [90]
    Z. K. Zhang, J. Dequidt, A. Kruszewski, F. Largilliere, and C. Duriez, “Kinematic modeling and observer based control of soft robot using real-time finite element method,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), Daejeon, Korea (South), 2016, pp. 5509–5514.
    [91]
    E. Coevoet, A. Escande, and C. Duriez, “Optimization-based inverse model of soft robots with contact handling,” IEEE Robot. Autom. Lett., vol. 2, no. 3, pp. 1413–1419, Jul. 2017. doi: 10.1109/LRA.2017.2669367
    [92]
    Z. K. Zhang, T. M. Bieze, J. Dequidt, A. Kruszewski, and C. Duriez, "Visual servoing control of soft robots based on finite element model,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 2017, pp. 2895–2901.
    [93]
    S. Grazioso, G. Di Gironimo, and B. Siciliano, “A geometrically exact model for soft continuum robots: The finite element deformation space formulation,” Soft Robotics, vol. 6, no. 6, pp. 790–811, Dec. 2019. doi: 10.1089/soro.2018.0047
    [94]
    S. D. Barforooshi and A. K. Mohammadi, “Study neo-Hookean and Yeoh hyper-elastic models in dielectric elastomer-based micro-beam resonators,” Lat. Am. J. Solids Struct., vol. 13, no. 10, pp. 1823–1837, Oct. 2016. doi: 10.1590/1679-78252432
    [95]
    S. Kut, G. Ryzinska, and B. Niedzialek, “Numerical analysis and experimental verification of elastomer bending process with different material models,” Open Eng., vol. 6, no. 1, pp. 228–234, Jun. 2016.
    [96]
    R. S. Penning, J. Jung, J. A. Borgstadt, N. J. Ferrier, and M. R. Zinn, “Towards closed loop control of a continuum robotic manipulator for medical applications,” in Proc. IEEE Int. Conf. Robotics and Autom., Shanghai, China, 2011, pp. 4822–4827.
    [97]
    J. Jung, R. S. Penning, N. J. Ferrier, and M. R. Zinn, “A modeling approach for continuum robotic manipulators: Effects of nonlinear internal device friction,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, San Francisco, CA, USA, 2011, pp. 5139–5146.
    [98]
    G. Subramani and M. R. Zinn, “Tackling friction-an analytical modeling approach to understanding friction in single tendon driven continuum manipulators,” in Proc. IEEE Int. Conf. Robotics and Autom. (ICRA), Seattle, WA, USA, 2015, pp. 610–617.
    [99]
    R. Roy, L. Wang, and N. Simaan, “Modeling and estimation of friction, extension, and coupling effects in multisegment continuum robots,” IEEE/ASME Trans. Mechatron., vol. 22, no. 2, pp. 909–920, Apr. 2017. doi: 10.1109/TMECH.2016.2643640
    [100]
    D. B. Camarillo, C. F. Milne, C. R. Carlson, M. R. Zinn, and J. K. Salisbury, “Mechanics modeling of tendon-driven continuum manipulators,” IEEE Trans. Robot., vol. 24, no. 6, pp. 1262–1273, Dec. 2008. doi: 10.1109/TRO.2008.2002311
    [101]
    D. B. Camarillo, C. R. Carlson, and J. K. Salisbury, “Configuration tracking for continuum manipulators with coupled tendon drive,” IEEE Trans. Robot., vol. 25, no. 4, pp. 798–808, Aug. 2009. doi: 10.1109/TRO.2009.2022426
    [102]
    I. D. Mayergoyz and G. Friedman, “Generalized preisach model of hysteresis,” IEEE Trans. Magn., vol. 24, no. 1, pp. 212–217, Jan. 1988. doi: 10.1109/20.43892
    [103]
    M. Al Janaideh, S. Rakheja, and C. Y. Su, “An analytical generalized Prandtl-Ishlinskii model inversion for hysteresis compensation in micropositioning control,” IEEE/ASME Trans. Mechatron., vol. 16, no. 4, pp. 734–744, Aug. 2011. doi: 10.1109/TMECH.2010.2052366
    [104]
    P. Chen, X. X. Bai, L. J. Qian, and S. B. Choi, “An approach for hysteresis modeling based on shape function and memory mechanism,” IEEE/ASME Trans. Mechatron., vol. 23, no. 3, pp. 1270–1278, Jun. 2018. doi: 10.1109/TMECH.2018.2833459
    [105]
    V. K. Chitrakaran, A. Behal, D. M. Dawson, and I. D. Walker, “Setpoint regulation of continuum robots using a fixed camera,” Robotica, vol. 25, no. 5, pp. 581–586, Sep. 2007. doi: 10.1017/S0263574707003475
    [106]
    H. S. Wang, R. X. Zhang, W. D. Chen, X. W. Liang, and R. Pfeifer, “Shape detection algorithm for soft manipulator based on fiber bragg gratings,” IEEE/ASME Trans. Mechatron., vol. 21, no. 6, pp. 2977–2982, Dec. 2016. doi: 10.1109/TMECH.2016.2606491
    [107]
    X. Ma, P. W. Y. Chiu, and Z. Li, “Real-time deformation sensing for flexible manipulators with bending and twisting,” IEEE Sens. J., vol. 18, no. 15, pp. 6412–6422, Aug. 2018. doi: 10.1109/JSEN.2018.2846762
    [108]
    W. Felt, K. Y. Chin, and C. D. Remy, “Contraction sensing with smart braid McKibben muscles,” IEEE/ASME Trans. Mechatron., vol. 21, no. 3, pp. 1201–1209, Jun. 2016. doi: 10.1109/TMECH.2015.2493782
    [109]
    G. Gerboni, A. Diodato, G. Ciuti, M. Cianchetti, and A. Menciassi, “Feedback control of soft robot actuators via commercial flex bend sensors,” IEEE/ASME Trans. Mechatron., vol. 22, no. 4, pp. 1881–1888, Aug. 2017. doi: 10.1109/TMECH.2017.2699677
    [110]
    R. Xu, A. Yurkewich, and R. V. Patel, “Curvature, torsion, and force sensing in continuum robots using helically wrapped FBG sensors,” IEEE Robot. Autom. Lett., vol. 1, no. 2, pp. 1052–1059, Jul. 2016. doi: 10.1109/LRA.2016.2530867
    [111]
    Y. Bailly, Y. Amirat, and G. Fried, “Modeling and control of a continuum style microrobot for endovascular surgery,” IEEE Trans. Robot., vol. 27, no. 5, pp. 1024–1030, Oct. 2011. doi: 10.1109/TRO.2011.2151350
    [112]
    A. V. Kudryavtsev, M. T. Chikhaoui, A. Liadov, P. Rougeot, F. Spindler, K. Rabenorosoa, J. Burgner-Kahrs, B. Tamadazte, and N. Andreff, “Eye-in-hand visual servoing of concentric tube robots,” IEEE Robot. Autom. Lett., vol. 3, no. 3, pp. 2315–2321, Jul. 2018. doi: 10.1109/LRA.2018.2807592
    [113]
    J. Z. Gul, K. Y. Su, and K. H. Choi, “Fully 3D printed multi-material soft bio-inspired whisker sensor for underwater-induced vortex detection,” Soft Robot., vol. 5, no. 2, pp. 122–132, Apr. 2018. doi: 10.1089/soro.2016.0069
    [114]
    M. Neumann and J. Burgner-Kahrs, “Considerations for follow-the-leader motion of extensible tendon-driven continuum robots,” in Proc. IEEE Int. Conf. Robotics and Autom. (ICRA), Stockholm, Sweden, 2016, pp. 917–923.
    [115]
    D. Palmer, S. Cobos-Guzman, and D. Axinte, “Real-time method for tip following navigation of continuum snake arm robots,” Robot. Autonom. Syst., vol. 62, no. 10, pp. 1478–1485, Oct. 2014. doi: 10.1016/j.robot.2014.05.013
    [116]
    H. B. Gilbert, J. Neimat, and R. J. Webster, “Concentric tube robots as steerable needles: Achieving follow-the-leader deployment,” IEEE Trans. Robot., vol. 31, no. 2, pp. 246–258, Apr. 2015. doi: 10.1109/TRO.2015.2394331
    [117]
    B. Ouyang, Y. H. Liu, and D. Sun, “Design and shape control of a three-section continuum robot,” in Proc. IEEE Int. Conf. Advanced Intelligent Mechatronics (AIM), Banff, Canada, 2016, pp. 1151–1156.
    [118]
    L. Dupourqué, F. Masaki, Y. L. Colson, T. Kato, and N. Hata, “Transbronchial biopsy catheter enhanced by a multisection continuum robot with follow-the-leader motion,” Int. J. Comput. Assist. Radiol. Surg., vol. 14, no. 11, pp. 2021–2029, Nov. 2019. doi: 10.1007/s11548-019-02017-w
    [119]
    G. Fang, X. M. Wang, K. Wang, K. H. Lee, J. D. L. Ho, H. C. Fu, D. K. C. Fu, and K. W. Kwok, “Vision-based online learning kinematic control for soft robots using local Gaussian process regression,” IEEE Robot. Autom. Lett., vol. 4, no. 2, pp. 1194–1201, 2019. doi: 10.1109/LRA.2019.2893691
    [120]
    H. S. Wang, B. H. Yang, Y. T. Liu, W. D. Chen, X. W. Liang, and R. Pfeifer, “Visual servoing of soft robot manipulator in constrained environments with an adaptive controller,” IEEE/ASME Trans. Mechatron., vol. 22, no. 1, pp. 41–50, Feb. 2017. doi: 10.1109/TMECH.2016.2613410
    [121]
    F. Xu, H. S. Wang, W. D. Chen, and Y. Z. Miao, “Visual servoing of a cable-driven soft robot manipulator with shape feature,” IEEE Robot. Autom. Lett, vol. 6, no. 3, pp. 4281–4288, 2021.
    [122]
    M. Mahvash and P. E. Dupont, “Stiffness control of surgical continuum manipulators,” IEEE Trans. Robot., vol. 27, no. 2, pp. 334–345, Apr. 2011. doi: 10.1109/TRO.2011.2105410
    [123]
    R. E. Goldman, A. Bajo, and N. Simaan, “Compliant motion control for continuum robots with intrinsic actuation sensing,” in Proc. IEEE Int. Conf. Robotics and Autom., Shanghai, China, 2011, pp. 1126–1132.
    [124]
    R. E. Goldman, A. Bajo, and N. Simaan, “Compliant motion control for multisegment continuum robots with actuation force sensing,” IEEE Trans. Robot., vol. 30, no. 4, pp. 890–902, Aug. 2014. doi: 10.1109/TRO.2014.2309835
    [125]
    A. Bajo and N. Simaan, “Hybrid motion/force control of multi-backbone continuum robots,” Int. J. Robot. Res., vol. 35, no. 4, pp. 422–434, Apr. 2016. doi: 10.1177/0278364915584806
    [126]
    A. Bajo, R. B. Pickens, S. D. Herrell, and N. Simaan, “Constrained motion control of multisegment continuum robots for transurethral bladder resection and surveillance,” in Proc. IEEE Int, Conf, Robotics and Autom., Karlsruhe, Germany, 2013, pp. 5837–5842.
    [127]
    L. Wu, K. Y. Wu, and H. L. Ren, “Towards hybrid control of a flexible curvilinear surgical robot with visual/haptic guidance,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), Daejeon, Korea (South), 2016, pp. 501–507.
    [128]
    G. Smoljkic, G. Borghesan, D. Reynaerts, J. De Schutter, J. V. Sloten, and E. V. Poorten, “Constraint-based interaction control of robots featuring large compliance and deformation,” IEEE Trans. Robot., vol. 31, no. 5, pp. 1252–1260, Oct. 2015. doi: 10.1109/TRO.2015.2475975
    [129]
    M. C. Yip and D. B. Camarillo, “Model-less feedback control of continuum manipulators in constrained environments,” IEEE Trans. Robot., vol. 30, no. 4, pp. 880–889, Aug. 2014. doi: 10.1109/TRO.2014.2309194
    [130]
    M. C. Yip and D. B. Camarillo, “Model-less hybrid position/force control: A minimalist approach for continuum manipulators in unknown, constrained environments,” IEEE Robot. Autom. Lett., vol. 1, no. 2, pp. 844–851, Jul. 2016. doi: 10.1109/LRA.2016.2526062
    [131]
    C. Della Santina, R. K. Katzschmann, A. Biechi, and D. Rus, “Dynamic control of soft robots interacting with the environment,” in Proc. IEEE Int. Conf. Soft Robotics (RoboSoft), Livorno, Italy, 2018, pp. 46–53.
    [132]
    H. S. Wang, H. Ni, J. C. Wang, and W. D. Chen, “Hybrid vision/force control of soft robot based on a deformation model,” IEEE Trans. Control Systems Technology, vol. 29, no. 2, pp. 661–671, Mar. 2021. doi: 10.1109/TCST.2019.2958015
    [133]
    B. Deutschmann, M. Chalon, J. Reinecke, M. Maier, and C. Ott, “Six-DoF pose estimation for a tendon-driven continuum mechanism without a deformation model,” IEEE Robot. Autom. Lett., vol. 4, no. 4, pp. 3425–3432, Oct. 2019. doi: 10.1109/LRA.2019.2927943
    [134]
    A. Ataka, A. Shiva, H. K. Lam, and K. Althoefer, “Magnetic-field-inspired Navigation for Soft Continuum Manipulator,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Madrid, Spain, 2018, pp. 168–173.
    [135]
    I. S. Godage, D. T. Branson, E. Guglielmino, and D. G. Caldwell, “Path planning for multisection continuum arms,” in Proc. IEEE Int. Conf. Mechatronics and Autom., Chengdu, China, 2012, pp. 1208–1213.
    [136]
    P. L. Anderson, A. W. Mahoney, and R. J. Webster, “Continuum reconfigurable parallel robots for surgery: Shape sensing and state estimation with uncertainty,” IEEE Robot. Autom. Lett., vol. 2, no. 3, pp. 1617–1624, Jul. 2017. doi: 10.1109/LRA.2017.2678606
    [137]
    D. Trivedi and C. D. Rahn, “Model-based shape estimation for soft robotic manipulators: The planar case,” J. Mech. Robot., vol. 6, no. 2, Article No. 021005, May 2014. doi: 10.1115/1.4026338
    [138]
    V. K. Venkiteswaran, J. Sikorski, and S. Misra, “Shape and contact force estimation of continuum manipulators using pseudo rigid body models,” Mech. Mach. Theory, vol. 139, pp. 34–45, Sep. 2019. doi: 10.1016/j.mechmachtheory.2019.04.008
    [139]
    M. Khoshnam and R. V. Patel, “Estimating contact force for steerable ablation catheters based on shape analysis,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Chicago, IL, USA, 2014, pp. 3509–3514.
    [140]
    D. C. Rucker and R. J. Webster, “Deflection-based force sensing for continuum robots: A probabilistic approach,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, San Francisco, CA, USA, 2011, pp. 3764–3769.
    [141]
    K. Xu and N. Simaan, “An investigation of the intrinsic force sensing capabilities of continuum robots,” IEEE Trans. Robot., vol. 24, no. 3, pp. 576–587, Jun. 2008. doi: 10.1109/TRO.2008.924266
    [142]
    R. Roy, L. Wang, and N. Simaan, “Investigation of effects of dynamics on intrinsic wrench sensing in continuum robots,” in Proc. IEEE Int. Conf. Robotics and Autom. (ICRA), Stockholm, Sweden, 2016, pp. 2052–2059.
    [143]
    F. Khan, R. J. Roesthuis, and S. Misra, “Force sensing in continuum manipulators using fiber bragg grating sensors,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 2017, pp. 2531–2536.
    [144]
    S. Hasanzadeh and F. Janabi-Sharifi, “Model-based force estimation for intracardiac catheters,” IEEE/ASME Trans. Mechatron., vol. 21, no. 1, pp. 154–162, Feb. 2016.
    [145]
    J. Back, L. Lindenroth, R. Karim, K. Althoefer, K. Rhode, and H. B. Liu, “New kinematic multi-section model for catheter contact force estimation and steering,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), Daejeon, Korea (South), 2016, pp. 2122–2127.
    [146]
    H. Yuan, P. W. Y. Chiu, and Z. Li, “Shape-reconstruction-based force sensing method for continuum surgical robots with large deformation,” IEEE Robot. Autom. Lett., vol. 2, no. 4, pp. 1972–1979, Oct. 2017. doi: 10.1109/LRA.2017.2716444
    [147]
    L. A. Huet, J. W. Rudnicki, and M. J. Z. Hartmann, “Tactile sensing with whiskers of various shapes: Determining the three-dimensional location of object contact based on mechanical signals at the whisker base,” Soft Robot., vol. 4, no. 2, pp. 88–102, Jun. 2017. doi: 10.1089/soro.2016.0028
    [148]
    A. Bajo and N. Simaan, “Kinematics-based detection and localization of contacts along multisegment continuum robots,” IEEE Trans. Robot., vol. 28, no. 2, pp. 291–302, Apr. 2012. doi: 10.1109/TRO.2011.2175761
    [149]
    A. Bajo and N. Simaan, “Finding lost wrenches: Using continuum robots for contact detection and estimation of contact location,” in Proc. IEEE Int. Conf. Robotics and Autom., Anchorage, AK, USA, 2010, pp. 3666–3673.
    [150]
    M. Khoshnam, A. C. Skanes, and R. V. Patel, “Modeling and estimation of tip contact force for steerable ablation catheters,” IEEE Trans. Biomed. Eng., vol. 62, no. 5, pp. 1404–1415, May 2015. doi: 10.1109/TBME.2015.2389615
    [151]
    O. Khatib, L. Sentis, J. Park, and J. Warren, “Whole-body dynamic behavior and control of human-like robots,” Int. J. Hum. Robot., vol. 1, no. 1, pp. 29–43, Mar. 2004. doi: 10.1142/S0219843604000058
    [152]
    C. Della Santina, A. Bicchi, and D. Rus, “Dynamic control of soft robots with internal constraints in the presence of obstacles,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), Macau, China, 2019, pp. 6622–6629.
    [153]
    V. Falkenhahn, A. Hildebrandt, R. Neumann, and O. Sawodny, “Model-based feedforward position control of constant curvature continuum robots using feedback linearization,” in Proc. IEEE Int. Conf. Robotics and Autom. (ICRA), Seattle, WA, USA, 2015, pp. 762–767.
    [154]
    F. Xu, H. S. Wang, W. D. Chen, and J. C. Wang, “Adaptive visual servoing control for an underwater soft robot,” Assembly Autom., vol. 38, no. 5, pp. 669–677, Dec. 2018. doi: 10.1108/AA-12-2017-193
    [155]
    T. Wang, Y. C. Zhang, Z. Chen, and S. Q. Zhu, “Parameter identification and model-based nonlinear robust control of fluidic soft bending actuators,” IEEE/ASME Trans. Mechatron., vol. 24, no. 3, pp. 1346–1355, Jun. 2019. doi: 10.1109/TMECH.2019.2909099
    [156]
    X. C. Wang, T. Geng, Y. Elsayed, C. Saaj, and C. Lekakou, “A unified system identification approach for a class of pneumatically-driven soft actuators,” Robot. Autonom. Syst., vol. 63, pp. 136–149, Jan. 2015. doi: 10.1016/j.robot.2014.08.017
    [157]
    Y. T. Li, Y. H. Chen, Y. Yang, and Y. Wei, “Passive particle jamming and its stiffening of soft robotic grippers,” IEEE Trans. Robot., vol. 33, no. 2, pp. 446–455, Apr. 2017. doi: 10.1109/TRO.2016.2636899
    [158]
    R. Deimel and O. Brock, “A novel type of compliant and underactuated robotic hand for dexterous grasping,” Int. J. Robot. Res., vol. 35, no. 1–3, pp. 161–185, Jan. 2016. doi: 10.1177/0278364915592961
    [159]
    J. R. Amend, E. Brown, N. Rodenberg, H. M. Jaeger, and H. Lipson, “A positive pressure universal gripper based on the jamming of granular material,” IEEE Trans. Robot., vol. 28, no. 2, pp. 341–350, Apr. 2012. doi: 10.1109/TRO.2011.2171093
    [160]
    P. Glick, S. A. Suresh, D. Ruffatto, M. Cutkosky, M. T. Tolley, and A. Parness, “A soft robotic gripper with gecko-inspired adhesive,” IEEE Robot. Autom. Lett., vol. 3, no. 2, pp. 903–910, Apr. 2018. doi: 10.1109/LRA.2018.2792688
    [161]
    C. Tawk, A. Gillett, M. in het Panhuis, G. M. Spinks, and G. Alici, “A 3D-printed omni-purpose soft gripper,” IEEE Trans. Robot., vol. 35, no. 5, pp. 1268–1275, Oct. 2019. doi: 10.1109/TRO.2019.2924386
    [162]
    P. Maeder-York, T. Clites, E. M. Boggs, R. A. Neff, P. Polygerinos, D. Holland, L. Stirling, K. C. Galloway, C. Wee, and C. J. Walsh, “Biologically inspired soft robot for thumb rehabilitation,” J. Med. Devices, vol. 8, no. 2, Article No. 020934, Jun. 2014. doi: 10.1115/1.4026996
    [163]
    F. Ilievski, A. D. Mazzeo, R. F. Shepherd, X. Chen, and G. M. Whitesides, “Soft robotics for chemists,” Angew. Chem.,Int. Ed., vol. 50, no. 8, pp. 1890–1895, Feb. 2011. doi: 10.1002/anie.201006464
    [164]
    M. Controzzi, C. Cipriani, and M. C. Carrozza, “Design of artificial hands: A review,” in the Human Hand as an Inspiration for Robot Hand Development, R. Balasubramanian and V. Santos, Eds. Switzerland: Springer, 2014, pp. 219–246.
    [165]
    A. Gupta, C. Eppner, S. Levine, and P. Abbeel, “Learning dexterous manipulation for a soft robotic hand from human demonstrations,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), Daejeon, Korea (South), 2016, pp. 3786–3793.
    [166]
    J. Y. Nagase, S. Wakimoto, T. Satoh, N. Saga, and K. Suzumori, “Design of a variable-stiffness robotic hand using pneumatic soft rubber actuators,” Smart Mater. Struct., vol. 20, Article No. 105015, Aug. 2011. doi: 10.1088/0964-1726/20/10/105015
    [167]
    M. Manti, T. Hassan, G. Passetti, N. D’Elia, C. Laschi, and M. Cianchetti, “A bioinspired soft robotic gripper for adaptable and effective grasping,” Soft Robot., vol. 2, no. 3, pp. 107–116, Sep. 2015. doi: 10.1089/soro.2015.0009
    [168]
    Y. She, C. Li, J. Cleary, and H. J. Su, “Design and fabrication of a soft robotic hand with embedded actuators and sensors,” J. Mech. Robot., vol. 7, Article No. 021007, May 2015. doi: 10.1115/1.4029497
    [169]
    R. Deimel, M. Radke, and O. Brock, “Mass control of pneumatic soft continuum actuators with commodity components,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), Daejeon, Korea (South), 2016, pp. 774–779.
    [170]
    W. Wang and S. H. Ahn, “Shape memory alloy-based soft gripper with variable stiffness for compliant and effective grasping,” Soft Robot., vol. 4, no. 4, pp. 379–389, Dec. 2017. doi: 10.1089/soro.2016.0081
    [171]
    S. Licht, E. Collins, M. L. Mendes, and C. Baxter, “Stronger at depth: Jamming grippers as deep sea sampling tools,” Soft Robotics, vol. 4, no. 4, pp. 305–316, Dec. 2017. doi: 10.1089/soro.2017.0028
    [172]
    E. Steltz, A. Mozeika, J. Rembisz, N. Corson, and H. M. Jaeger, “Jamming as an enabling technology for soft robotics,” in Proc. SPIE 7642, Electroactive Polymer Actuators and Devices (EAPAD), San Diego, California, United States, 2010.
    [173]
    E. Brown, N. Rodenberg, J. Amend, A. Mozeika, E. Steltz, M. R. Zakin, H. Lipson, and H. M. Jaeger, “Universal robotic gripper based on the jamming of granular material,” Proc. Natl. Acad. Sci. USA, vol. 107, no. 44, pp. 18809–18814, Nov. 2010. doi: 10.1073/pnas.1003250107
    [174]
    Y. T. Li, Y. H. Chen, and Y. Q. Li, “Distributed design of passive particle jamming based soft grippers,” in Proc. IEEE Int. Conf. Soft Robotics (RoboSoft), Livorno, Italy, 2018, pp. 547–552.
    [175]
    M. Brancadoro, M. Manti, S. Tognarelli, and M. Cianchetti, “Preliminary experimental study on variable stiffness structures based on fiber jamming for soft robots,” in Proc. IEEE Int. Conf. Soft Robotics (RoboSoft), Livorno, Italy, 2018, pp. 258–263.
    [176]
    J. Amend and H. Lipson, “The JamHand: Dexterous manipulation with minimal actuation,” Soft Robot., vol. 4, no. 1, pp. 70–80, Mar. 2017. doi: 10.1089/soro.2016.0037
    [177]
    J. Nassour, V. Ghadiya, V. Hugel, and F. H. Hamker, “Design of new sensory soft hand: Combining air-pump actuation with superimposed curvature and pressure sensors,” in Proc. IEEE Int. Conf. Soft Robotics (RoboSoft), Livorno, Italy, 2018, pp. 164–169.
    [178]
    R. Pfeifer, M. Lungarella, and F. Iida, “The challenges ahead for bio-inspired 'Soft' robotics,” Commun. ACM, vol. 55, no. 11, pp. 76–87, Nov. 2012. doi: 10.1145/2366316.2366335
    [179]
    A. M. Nasab, A. Sabzehzar, M. Tatari, C. Majidi, and W. L. Shan, “A soft gripper with rigidity tunable elastomer strips as ligaments,” Soft Robot., vol. 4, no. 4, pp. 411–420, Dec. 2017. doi: 10.1089/soro.2016.0039
    [180]
    W. Crooks, G. Vukasin, M. O’Sullivan, W. Messner, and C. Rogers, “Fin Ray ® effect inspired soft robotic gripper: From the robosoft grand challenge toward optimization,” Front. Robot. AI, vol. 3, Article No. 70, Nov. 2016.
    [181]
    O. Pfaff, S. Simeonov, I. Cirovic, and P. Stano, “Application of fin ray effect approach for production process automation,” Annals of DAAAM &Proceedings, vol. 22, pp. 1247–1249, Jan. 2011.
    [182]
    Y. Q. Li, Y. H. Chen, and Y. T. Li, “Pre-charged pneumatic soft gripper with closed-loop control,” IEEE Robot. Autom. Lett., vol. 4, no. 2, pp. 1402–1408, Apr. 2019. doi: 10.1109/LRA.2019.2895877
    [183]
    D. R. Faria, P. Trindade, J. Lobo, and J. Dias, “Knowledge-based reasoning from human grasp demonstrations for robot grasp synthesis,” Robot. Autonom. Syst., vol. 62, no. 6, pp. 794–817, Jun. 2014. doi: 10.1016/j.robot.2014.02.003
    [184]
    J. Fras, Y. Noh, M. Macias, H. Wurdemann, and K. Althoefer, “Bio-inspired octopus robot based on novel soft fluidic actuator,” in Proc. IEEE Int. Conf. Robotics and Autom., Brisbane, QLD, Australia, 2018, pp. 1583–1588.
    [185]
    C. Christianson, N. N. Goldberg, D. D. Deheyn, S. Q. Cai, and M. T. Tolley, “Translucent soft robots driven by frameless fluid electrode dielectric elastomer actuators,” Sci. Robot., vol. 3, no. 17, Article No. eaat1893, Apr. 2018. doi: 10.1126/scirobotics.aat1893
    [186]
    B. Y. Liu and F. L. Hammond, “Modular platform for the exploration of form-function relationships in soft swimming robots,” in Proc. 3rd IEEE Int. Conf. Soft Robotics (RoboSoft), New Haven, CT, USA, 2020, pp. 772–778.
    [187]
    M. Ishida, D. Drotman, B. Shih, M. Hermes, M. Luhar, and M. T. Tolley, “Morphing structure for changing hydrodynamic characteristics of a soft underwater walking robot,” IEEE Robot. Autom. Lett., vol. 4, no. 4, pp. 4163–4169, Oct. 2019. doi: 10.1109/LRA.2019.2931263
    [188]
    T. Li, K. Nakajima, M. Calisti, C. Laschi, and R. Pfeifer, “Octopus-inspired sensorimotor control of a multi-arm soft robot,” in Proc. IEEE Int. Conf. Mechatronics and Autom., Chengdu, China, 2012, pp. 948–955.
    [189]
    M. Calisti, M. Giorelli, G. Levy, B. Mazzolai, B. Hochner, C. Laschi, and P Dario, “An octopus-bioinspired solution to movement and manipulation for soft robots,” Bioinspir. Biomim., vol. 6, no. 3, Article No. 036002, Jun. 2011. doi: 10.1088/1748-3182/6/3/036002
    [190]
    M. Sfakiotakis, A. Kazakidi, and D. P. Tsakiris, “Octopus-inspired multi-arm robotic swimming,” Bioinspir. Biomim., vol. 10, no. 3, Article No. 035005, May 2015. doi: 10.1088/1748-3190/10/3/035005
    [191]
    F. G. Serchi, A. Arienti, I. Baldoli, and C. Laschi, “An elastic pulsed-jet thruster for Soft Unmanned Underwater Vehicles,” in Proc. IEEE Int. Conf. Robotics and Autom., Karlsruhe, Germany, 2013, pp. 5103–5110.
    [192]
    H. Ando, Y. Ambe, A. Ishii, M. Konyo, K. Tadakuma, S. Maruyama, and S. Tadokoro, “Aerial hose type robot by water jet for fire fighting,” IEEE Robot. Autom. Lett., vol. 3, no. 2, pp. 1128–1135, Apr. 2018. doi: 10.1109/LRA.2018.2792701
    [193]
    F. Renda, F. Giorgio-Serchi, F. Boyer, and C. Laschi, “Locomotion and elastodynamics model of an underwater shell-like soft robot,” in Proc. IEEE Int. Conf. Robotics and Autom., Seattle, WA, USA, 2015, pp. 1158–1165.
    [194]
    H. L. Liu, B. Taylor, and O. M. Curet, “Fin ray stiffness and fin morphology control ribbon-fin-based propulsion,” Soft Robot., vol. 4, no. 2, pp. 103–116, Jun. 2017. doi: 10.1089/soro.2016.0040
    [195]
    J. Shintake, H. Shea, and D. Floreano, “Biomimetic underwater robots based on dielectric elastomer actuators,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), Daejeon, Korea (South), 2016, pp. 4957–4962.
    [196]
    T. D. Ta, T. Umedachi, and Y. Kawahara, “Inkjet printable actuators and sensors for soft-bodied crawling robots,” in Proc. Int. Conf. Robotics and Autom. (ICRA), Montreal, QC, Canada, 2019, pp. 3658–3664.
    [197]
    B. Gamus, L. Salem, A. D. Gat, and Y. Or, “Understanding inchworm crawling for soft-robotics,” IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 1397–1404, Apr. 2020. doi: 10.1109/LRA.2020.2966407
    [198]
    D. Drotman, S. Jadhav, M. Karimi, P. De Zonia, and M. T. Tolley, “3D printed soft actuators for a legged robot capable of navigating unstructured terrain,” in Proc. IEEE Int. Conf. Robotics and Autom. (ICRA), Singapore, Singapore, 2017, pp. 5532–5538.
    [199]
    J. Rieffel, D. Knox, S. Smith, and B. Trimmer, “Growing and evolving soft robots,” Artificial Life, vol. 20, no. 1, pp. 143–162, Winter. 2014. doi: 10.1162/ARTL_a_00101
    [200]
    R. Pfeifer and J. C. Bongard, How the Body Shapes the Way We Think: A New View of Intelligence (A Bradford Book). Cambridge, MA, USA: MIT Press, 2006.
    [201]
    F. Corucci, M. Calisti, H. Hauser, and C. Laschi, “Evolutionary discovery of self-stabilized dynamic gaits for a soft underwater legged robot,” in Proc. Int. Conf. Advanced Robotics (ICAR), Istanbul, Turkey, 2015, pp. 337–344.
    [202]
    T. Umedachi, V. Vikas, and B. A. Trimmer, “Softworms: The design and control of non-pneumatic, 3d-printed, deformable robots,” Bioinspir. Biomim., vol. 11, no. 2, Article No. 025001, Mar. 2016. doi: 10.1088/1748-3190/11/2/025001
    [203]
    Y. T. Cao, Y. L. Liu, Y. L. Chen, L. L. Zhu, Y. Yan, and X. Chen, “A novel slithering locomotion mechanism for a snake-like soft robot,” J. Mech. Phys. Solids, vol. 99, pp. 304–320, Feb. 2017. doi: 10.1016/j.jmps.2016.11.019
    [204]
    H. X. Guo, J. H. Zhang, T. Wang, Y. J. Li, J. Hong, and Y. Li, “Design and control of an inchworm-inspired soft robot with omega-arching locomotion,” in Proc. IEEE Int. Conf. Robotics and Autom. (ICRA), Singapore, Singapore, 2017, pp. 4154–4159.
    [205]
    G. Y. Gu, J. Zou, R. K. Zhao, X. H. Zhao, and X. Y. Zhu, “Soft wall-climbing robots,” Sci. Robot., vol. 3, no. 25, Article No. eaat2874, Dec. 2018. doi: 10.1126/scirobotics.aat2874
    [206]
    T. Umedachi and Y. Kawahara, “Caterpillar-inspired crawling robot on a stick using active-release and passive-grip elastic legs,” in Proc. IEEE Int. Conf. Soft Robotics (RoboSoft), Livorno, Italy, 2018, pp. 461–466.
    [207]
    Q. Y. Wu, V. Pradeep, and X. Y. Liu, “A paper-based wall-climbing robot enabled by electrostatic adhesion,” in Proc. IEEE Int. Conf. Soft Robotics (RoboSoft), Livorno, Italy, 2018, pp. 315–320.
    [208]
    T. Umedachi, V. Vikas, and B. A. Trimmer, “Highly deformable 3-D printed soft robot generating inching and crawling locomotions with variable friction legs,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Tokyo, Japan, 2013, pp. 4590–4595.
    [209]
    J. S. Koh and K. J. Cho, “Omega-shaped inchworm-inspired crawling robot with large-index-and-pitch (LIP) SMA spring actuators,” IEEE/ASME Trans. Mechatron., vol. 18, no. 2, pp. 419–429, Apr. 2013. doi: 10.1109/TMECH.2012.2211033
    [210]
    T. Umedachi and B. A. Trimmer, “Design of a 3D-printed soft robot with posture and steering control,” in Proc. IEEE Int. Conf. Robotics and Autom. (ICRA), Hong Kong, China, 2014, pp. 2874–2879.
    [211]
    H. Q. Niu, R. Y. Feng, Y. W. Xie, B. W. Jiang, Y. Z. Sheng, Y. Yu, H. X. Baoyin, and X. Y. Zeng, “MagWorm: A biomimetic magnet embedded worm-like soft robot,” Soft Robot., Aug. 2020.
    [212]
    M. P. Nemitz, P. Mihaylov, T. W. Barraclough, D. Ross, and A. A. Stokes, “Using voice coils to actuate modular soft robots: Wormbot, an example,” Soft Robot., vol. 3, no. 4, pp. 198–204, Dec. 2016. doi: 10.1089/soro.2016.0009
    [213]
    S. Rozen-Levy, W. Messner, and B. A. Trimmer, “The design and development of branch bot: A branch-crawling, caterpillar-inspired, soft robot,” Int. J. Robot. Res., vol. 40, no. 1, pp. 24–36, Jan. 2021. doi: 10.1177/0278364919846358
    [214]
    J. Z. Ge, A. A. Calderón, and N. O. Pérez-Arancibia, “An earthworm-inspired soft crawling robot controlled by friction,” in Proc. IEEE Int. Conf. Robotics and Biomimetics (ROBIO), Macau, China, 2017, pp. 834–841.
    [215]
    E. F. M. Henke, S. Schlatter, and I. A. Anderson, “Soft dielectric elastomer oscillators driving bioinspired robots,” Soft Robot., vol. 4, no. 4, pp. 353–366, Dec. 2017. doi: 10.1089/soro.2017.0022
    [216]
    M. S. Verma, A. Ainla, D. Yang, D. Harburg, and G. M. Whitesides, “A soft tube-climbing robot,” Soft Robot., vol. 5, no. 2, pp. 133–137, Apr. 2018. doi: 10.1089/soro.2016.0078
    [217]
    J. Z. Ge, A. A. Calderón, L. L. Chang, and N. O. Pérez-Arancibia, “An earthworm-inspired friction-controlled soft robot capable of bidirectional locomotion,” Bioinspir. Biomim., vol. 14, no. 3, Article No. 036004, Feb. 2019. doi: 10.1088/1748-3190/aae7bb
    [218]
    J. H. Zhang, T. Wang, J. Wang, B. T. Li, J. Hong, J. X. J. Zhang, and M. Y. Wang, “Dynamic modeling and simulation of inchworm movement towards bio-inspired soft robot design,” Bioinspir. Biomin., vol. 14, no. 6, Article No. 066012, Sept. 2019.
    [219]
    J. O. Alcaide, L. Pearson, and M. E. Rentschler, “Design, modeling and control of a SMA-actuated biomimetic robot with novel functional skin,” in Proc. IEEE Int. Conf. Robotics and Autom. (ICRA), Singapore, 2017, pp. 4338–4345.
    [220]
    A. A. Calderón, J. C. Ugalde, J. C. Zagal, and N. O. Pérez-Arancibia, “Design, fabrication and control of a multi-material-multi-actuator soft robot inspired by burrowing worms,” in Proc. IEEE Int. Conf. Robotics and Biomimetics (ROBIO), Qingdao, China, 2016, pp. 31–38.
    [221]
    J. B. Wang, J. Min, Y. Q. Fei, and W. Pang, “Study on nonlinear crawling locomotion of modular differential drive soft robot,” Nonlinear Dyn., vol. 97, pp. 1107–1123, Jul. 2019. doi: 10.1007/s11071-019-05035-0
    [222]
    C. D. Onal and D. Rus, “Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot,” Bioinspir. Biomim., vol. 8, no. 2, Article No. 026003, Jun. 2013. doi: 10.1088/1748-3182/8/2/026003
    [223]
    M. Sitti, Mobile Microrobotics. Cambridge, Massachusetts: MIT Press, 2017.
    [224]
    X. M. Du, H. Q. Cui, T. T. Xu, C. Y. Huang, Y. L. Wang, Q. L. Zhao, Y. S. Xu, and X. Y. Wu, “Reconfiguration, camouflage, and color-shifting for bioinspired adaptive hydrogel-based millirobots,” Adv. Funct. Mater., vol. 30, no. 10, Article No. 1909202, Mar. 2020. doi: 10.1002/adfm.201909202
    [225]
    T. T. Xu, J. F. Yu, C. I. Vong, B. Wang, X. Y. Wu, and L. Zhang, “Dynamic morphology and swimming properties of rotating miniature swimmers with soft tails,” IEEE/ASME Trans. Mechatron., vol. 24, no. 3, pp. 924–934, Jun. 2019. doi: 10.1109/TMECH.2019.2912404
    [226]
    B. J. Nelson, I. K. Kaliakatsos, and J. J. Abbott, “Microrobots for minimally invasive medicine,” Annu. Rev. Biomed. Eng., vol. 12, pp. 55–85, Aug. 2010. doi: 10.1146/annurev-bioeng-010510-103409
    [227]
    W. Q. Hu, G. Z. Lum, M. Mastrangeli, and M. Sitti, “Small-scale soft-bodied robot with multimodal locomotion,” Nature, vol. 554, no. 7690, pp. 81–85, Feb. 2018. doi: 10.1038/nature25443
    [228]
    H. Ceylan, J. Giltinan, K. Kozielski, and M. Sitti, “Mobile microrobots for bioengineering applications,” Lab Chip, vol. 17, pp. 1705–1724, Apr. 2017. doi: 10.1039/C7LC00064B
    [229]
    S. Miyashita, S. Guitron, M. Ludersdorfer, C. R. Sung, and D. Rus, “An untethered miniature origami robot that self-folds, walks, swims, and degrades,” in Proc. IEEE Int. Conf. Robotics and Autom., Seattle, WA, USA, 2015, pp. 1490–1496.
    [230]
    Z. M. Liu, J. Q. Liu, H. Wang, X. Yu, K. Yang, W. B. Liu, S. L. Nie, W. G. Sun, Z. X. Xie, B. H. Chen, S. Z. Liang, Y. C. Guan, and L. Wen, “A 1 mm-thick miniatured mobile soft robot with mechanosensation and multimodal locomotion,” IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 3291–3298, Apr. 2020. doi: 10.1109/LRA.2020.2976306
    [231]
    H. W. Huang, M. S. Sakar, A. J. Petruska, S. Pané, and B. J. Nelson, “Soft micromachines with programmable motility and morphology,” Nat. Commun., vol. 7, Article No. 12263, Jul. 2016. doi: 10.1038/ncomms12263
    [232]
    H. Y. Chen, R. S. Diteesawat, A. Haynes, A. J. Partridge, M. F. Simons, E. Werner, M. Garrad, J. Rossiter, and A. T. Conn, “RUBIC: An untethered soft robot with discrete path following,” Front. Robot. AI, vol. 6, Article No. 52, Jul. 2019. doi: 10.3389/frobt.2019.00052
    [233]
    S. Palagi, A. G. Mark, S. Y. Reigh, K. Melde, T. Qiu, H. Zeng, C. Parmeggiani, D. Martella, A. Sanchez-Castillo, N. Kapernaum, F. Giesselmann, D. S. Wiersma, E. Lauga, and P. Fischer, “Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots,” Nat. Mater., vol. 15, no. 6, pp. 647–653, Jun. 2016. doi: 10.1038/nmat4569
    [234]
    C. L. Huang, J. A. Lv, X. J. Tian, Y. C. Wang, Y. L. Yu, and J. Liu, “Miniaturized swimming soft robot with complex movement actuated and controlled by remote light signals,” Sci. Rep., vol. 5, Article No. 17414, Dec. 2015. doi: 10.1038/srep17414
    [235]
    J. R. Li, J. B. Wang, and Y. Q. Fei, “Nonlinear modeling on a SMA actuated circular soft robot with closed-loop control system,” Nonlinear Dyn., vol. 96, pp. 2627–2635, Jun. 2019. doi: 10.1007/s11071-019-04949-z
    [236]
    Z. Chen, S. Shatara, and X. B. Tan, “Modeling of biomimetic robotic fish propelled by an ionic polymer-metal composite caudal fin,” IEEE/ASME Trans. Mechatron., vol. 15, no. 3, pp. 448–459, Jun. 2010. doi: 10.1109/TMECH.2009.2027812
    [237]
    M. Calisti, F. Corucci, A. Arienti, and C. Laschi, “Dynamics of underwater legged locomotion: Modeling and experiments on an octopus-inspired robot,” Bioinspir. Biomim., vol. 10, no. 4, Article No. 046012, Jul. 2015. doi: 10.1088/1748-3190/10/4/046012
    [238]
    Y. Q. Fei and H. W. Xu, “Modeling and motion control of a soft robot,” IEEE Trans. Ind. Electron., vol. 64, no. 2, pp. 1737–1742, Feb. 2017. doi: 10.1109/TIE.2016.2572670
    [239]
    S. Seok, C. D. Onal, K. J. Cho, R. J. Wood, D. Rus, and S. Kim, “Meshworm: A peristaltic soft robot with antagonistic nickel titanium coil actuators,” IEEE/ASME Trans. Mechatron., vol. 18, no. 5, pp. 1485–1497, Oct. 2013. doi: 10.1109/TMECH.2012.2204070
    [240]
    T. T. Xu, G. Hwang, N. Andreff, and S. Régnier, “Planar path following of 3-D steering scaled-up helical microswimmers,” IEEE Trans. Robot., vol. 31, no. 1, pp. 117–127, Feb. 2015. doi: 10.1109/TRO.2014.2380591
    [241]
    C. Y. Huang, T. T. Xu, J. Liu, L. Manamanchaiyaporn, and X. Y. Wu, “Visual servoing of miniature magnetic film swimming robots for 3-D arbitrary path following,” IEEE Robot. Autom. Lett., vol. 4, no. 4, pp. 4185–4191, Oct. 2019. doi: 10.1109/LRA.2019.2931234
    [242]
    A. Oulmas, N. Andreff, and S. Régnier, “3D closed-loop swimming at low Reynolds numbers,” Int. J. Robot. Res., vol. 37, no. 11, pp. 1359–1375, Sep. 2018. doi: 10.1177/0278364918801502
    [243]
    F. Z. Low, J. H. Lim, and C. H. Yeow, “Design, characterisation and evaluation of a soft robotic sock device on healthy subjects for assisted ankle rehabilitation,” J. Med. Eng. Technol., vol. 42, no. 1, pp. 26–34, Jan. 2018. doi: 10.1080/03091902.2017.1411985
    [244]
    L. Mena, C. A. Monje, L. Nagua, J. Muñoz, and C. Balaguer, “Test bench for evaluation of a soft robotic link,” Front. Robot. AI, vol. 7, Article No. 27, Mar. 2020. doi: 10.3389/frobt.2020.00027
    [245]
    B. S. Homberg, R. K. Katzschmann, M. R. Dogar, and D. Rus, “Robust proprioceptive grasping with a soft robot hand,” Auton. Robot., vol. 43, pp. 681–696, Mar. 2019. doi: 10.1007/s10514-018-9754-1

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article Metrics

    Article views (2635) PDF downloads(420) Cited by()

    Highlights

    • This paper aims to brief the progress of soft robotic research for readers interested in this field.
    • Clarifying how a control algorithm can be yielded dependent on morphology and working environment.
    • Interpreting the relationship between morphology and morphology-dependent motion strategy.
    • Delving into the common issues in different soft robots and elucidating generic solutions.

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return