IEEE/CAA Journal of Automatica Sinica
Citation: | L. Xu, D. Xu, X. Yi, C. Deng, T. Chai, and T. Yang, “Decentralized federated learning algorithm under adversary eavesdropping,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 2, pp. 448–456, Feb. 2025. doi: 10.1109/JAS.2024.125079 |
[1] |
M. Qi, Z. Wang, Q.-L. Han, J. Zhang, S. Chen, and Y. Xiang, “Privacy protection for blockchain-based healthcare IoT systems: A survey,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 8, pp. 1757–1776, 2022.
|
[2] |
J. Zhang, L. Pan, Q.-L. Han, C. Chen, S. Wen, and Y. Xiang, “Deep learning based attack detection for cyber-physical system cybersecurity: A survey,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 3, pp. 377–391, 2021.
|
[3] |
Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, and H. Yu, “Federated learning,” Synthesis Lectures on Artificial Intelligence and Machine Learning, vol. 13, no. 3, pp. 1–207, 2019. doi: 10.1007/978-3-031-01585-4
|
[4] |
Q. Li, Z. Wen, Z. Wu, S. Hu, N. Wang, Y. Li, X. Liu, and B. He, “A survey on federated learning systems: Vision, hype and reality for data privacy and protection,” IEEE Trans. Knowledge and Data Engi- neering, vol. 35, no. 4, pp. 3347–3366, 2021.
|
[5] |
B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-efficient learning of deep networks from decentralized data,” in Proc. 20th Int. Conf. Artificial Intelligence and Statistics, 2017, pp. 1273–1282.
|
[6] |
J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon, “Federated learning: Strategies for improving communication efficiency,” arXiv preprint arXiv: 1610.05492, 2016.
|
[7] |
A. G. Roy, S. Siddiqui, S. Pölsterl, N. Navab, and C. Wachinger, “Braintorrent: A peer-to-peer environment for decentralized federated learning,” arXiv preprint arXiv: 1905.06731, 2019.
|
[8] |
Y. Yuan, J. Liu, D. Jin, et al., “DeceFL: A principled fully decentralized federated learning framework,” National Science Open, vol. 2, no. 1, p. 20220043, 2023. doi: 10.1360/nso/20220043
|
[9] |
Y. Wang and A. Nedić, “Decentralized gradient methods with time-varying uncoordinated stepsizes: Convergence analysis and privacy design,” IEEE Trans. Autom. Control, vol. 69, no. 8, pp. 5352–5367, 2023.
|
[10] |
O. Goldreich, Foundations of Cryptography: Volume 2, Basic Applications. Cambridge, UK: Cambridge University Press, 2009.
|
[11] |
W. Yang, Z. Zheng, G. Chen, Y. Tang, and X. Wang, “Security analysis of a distributed networked system under eavesdropping attacks,” IEEE Trans. Circuits and Systems II: Express Briefs, vol. 67, no. 7, pp. 1254–1258, 2019.
|
[12] |
Y. Aono, T. Hayashi, L. Wang, and S. Moriai, “Privacy-preserving deep learning via additively homomorphic encryption,” IEEE Trans. Infor. Forensics and Security, vol. 13, no. 5, pp. 1333–1345, 2017.
|
[13] |
C. Fontaine and F. Galand, “A survey of homomorphic encryption for nonspecialists,” EURASIP J. Infor. Security, vol. 2007, pp. 1–10, 2007.
|
[14] |
C. Dwork, “Differential privacy: A survey of results,” in Proc. Int. Conf. Theory and Applications of Models of Computation, 2008, pp. 1–19.
|
[15] |
D. Maity and V. S. Mai, “Ensuring system-level protection against eavesdropping adversaries in distributed dynamical systems,” arXiv preprint arXiv: 2409.09539, 2024.
|
[16] |
A. Krizhevsky, “Learning multiple layers of features from tiny images,” University of Toronto, Toronto, Canada, Tech. Rep., 2009.
|
[17] |
S. Warnat-Herresthal, H. Schultze, K. L. Shastry, et al., “Swarm learning for decentralized and confidential clinical machine learning,” Nature, vol. 594, no. 7862, pp. 265–270, 2021. doi: 10.1038/s41586-021-03583-3
|
[18] |
H. Kim, J. Park, M. Bennis, and S.-L. Kim, “Blockchained on-device federated learning,” IEEE Communi. Lett., vol. 24, no. 6, pp. 1279–1283, 2019.
|
[19] |
M. Blot, D. Picard, M. Cord, and N. Thome, “Gossip training for deep learning,” arXiv preprint arXiv: 1611.09726, 2016.
|
[20] |
J. Daily, A. Vishnu, C. Siegel, T. Warfel, and V. Amatya, “Gossipgrad: Scalable deep learning using gossip communication based asynchronous gradient descent,” arXiv preprint arXiv: 1803.05880, 2018.
|
[21] |
R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks and privacy homomorphisms,” Foundations of Secure Computation, vol. 4, no. 11, pp. 169–180, 1978.
|
[22] |
C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity in private data analysis,” in Proc. Theory of Cryptography Conf., 2006, pp. 265–284.
|
[23] |
P. Paillier, “Public-key cryptosystems based on composite degree residuosity classes,” in Proc. Int. Conf. Theory and Applications of Cryptographic Techniques, 1999, pp. 223–238.
|
[24] |
T. ElGamal, “A public key cryptosystem and a signature scheme based on discrete logarithms,” IEEE Trans.n Inform. Theory, vol. 31, no. 4, pp. 469–472, 1985. doi: 10.1109/TIT.1985.1057074
|
[25] |
C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc. 41th Annual ACM Symp. Theory Computing, 2009, pp. 169–178.
|
[26] |
K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation for privacy-preserving machine learning,” in Proc. ACM SIGSAC Conf. Computer and Communi. Security, 2017, pp. 1175–1191.
|
[27] |
C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu, “BatchCrypt: Efficient homomorphic encryption for Cross-Silo federated learning,” in Proc. USENIX Annu. Technical Conf., 2020, pp. 493–506.
|
[28] |
F. D. McSherry, “Privacy integrated queries: An extensible platform for privacy-preserving data analysis,” in Proc. ACM SIGMOD Int. Conf. Management of Data, 2009, pp. 19–30.
|
[29] |
B. Bebensee, “Local differential privacy: A tutorial,” arXiv preprint arXiv: 1907.11908, 2019.
|
[30] |
F. McSherry and K. Talwar, “Mechanism design via differential privacy,” in Proc. 48th Annual IEEE Symp. Foundations of Computer Science, 2007, pp. 94–103.
|
[31] |
X. Yi, S. Zhang, T. Yang, T. Chai, and K. H. Johansson, “A primal-dual SGD algorithm for distributed nonconvex optimization,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 812–833, 2022. doi: 10.1109/JAS.2022.105554
|
[32] |
X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence of fedavg on non-IID data,” in Proc. Int. Conf. Learning Representations, 2019, pp. 1–26.
|
[33] |
X. Liang, S. Shen, J. Liu, Z. Pan, E. Chen, and Y. Cheng, “Variance reduced local SGD with lower communication complexity,” arXiv preprint arXiv: 1912.12844, 2019.
|
[34] |
F. Haddadpour and M. Mahdavi, “On the convergence of local descent methods in federated learning,” arXiv preprint arXiv: 1910.14425, 2019.
|
[35] |
D. Maity and P. Tsiotras, “Multiagent consensus subject to communication and privacy constraints,” IEEE Trans. Control Network Systems, vol. 9, no. 2, pp. 943–955, 2021.
|
[36] |
A. Tsiamis, K. Gatsis, and G. J. Pappas, “State-secrecy codes for networked linear systems,” IEEE Trans. Autom. Control, vol. 65, no. 5, pp. 2001–2015, 2019.
|
[37] |
W. A. Smith and R. B. Randall, “Rolling element bearing diagnostics using the case western reserve university data: A benchmark study,” Mechanical Systems and Signal Processing, vol. 64, pp. 100–131, 2015.
|
[38] |
D. Misra, “Mish: A self regularized non-monotonic activation function,” arXiv preprint arXiv: 1908.08681, 2019.
|