A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 4 Issue 3
Jul.  2017

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 6.171, Top 11% (SCI Q1)
    CiteScore: 11.2, Top 5% (Q1)
    Google Scholar h5-index: 51, TOP 8
Turn off MathJax
Article Contents
Won-Sang Im, Cheng Wang, Wenxin Liu, Liming Liu and Jang-Mok Kim, "Distributed Virtual Inertia Based Control of Multiple Photovoltaic Systems in Autonomous Microgrid," IEEE/CAA J. Autom. Sinica, vol. 4, no. 3, pp. 512-519, July 2017. doi: 10.1109/JAS.2016.7510031
Citation: Won-Sang Im, Cheng Wang, Wenxin Liu, Liming Liu and Jang-Mok Kim, "Distributed Virtual Inertia Based Control of Multiple Photovoltaic Systems in Autonomous Microgrid," IEEE/CAA J. Autom. Sinica, vol. 4, no. 3, pp. 512-519, July 2017. doi: 10.1109/JAS.2016.7510031

Distributed Virtual Inertia Based Control of Multiple Photovoltaic Systems in Autonomous Microgrid

doi: 10.1109/JAS.2016.7510031
More Information
  • The large inertia of a traditional power system slows down system's frequency response but also allows decent time for controlling the system. Since an autonomous renewable microgrid usually has much smaller inertia, the control system must be very fast and accurate to fight against the small inertia and uncertainties. To reduce the demanding requirements on control, this paper proposes to increase the inertia of photovoltaic (PV) system through inertia emulation. The inertia emulation is realized by controlling the charging/discharging of the direct current (DC)-link capacitor over a certain range and adjusting the PV generation when it is feasible and/or necessary. By well designing the inertia, the DC-link capacitor parameters and the control range, the negative impact of inertia emulation on energy efficiency can be reduced. The proposed algorithm can be integrated with distributed generation setting algorithms to improve dynamic performance and lower implementation requirements. Simulation studies demonstrate the effectiveness of the proposed solution.

     

  • loading
  • [1]
    N. Hatziargyriou, H. Asano, R. Iravani, and C. Marnay, "Microgrids, " IEEE Power Energ. Magaz. , vol. 5, no. 4, pp. 78-94, Jul. -Aug. 2007. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8014
    [2]
    N. Hatziargyriou, "Microgrids[guest editorial], " IEEE Power Energ. Magaz. , vol. 6, no. 3, pp. 26-29, May-Jun. 2008. https://www.researchgate.net/publication/283096191_Scalable_and_optimal_coalition_formation_of_microgrids_in_a_distribution_system
    [3]
    G. Venkataramanan and C. Marnay, "A larger role for microgrids, " IEEE Power Energ. Magaz. , vol. 6, no. 3, pp. 78-82, May-Jun. 2008.
    [4]
    J. M. Guerrero, J. C. Vsquez, J. Matas, M. Castilla, and L. G. de Vicuna, "Control strategy for flexible microgrid based on parallel line-interactive UPS systems, " IEEE Tran. Ind. Elec. , vol. 56, no. 3, pp. 726-736, Mar. 2009. https://www.researchgate.net/publication/224351929_Control_Strategy_for_Flexible_Microgrid_Based_on_Parallel_Line-Interactive_UPS_Systems
    [5]
    J. Ekanayake and N. Jenkins, "Comparison of the response of doubly fed and fixed-speed induction generator wind turbines to changes in network frequency, " IEEE Tran. Energ. Conv. , vol. 19, no. 4, pp. 800-802, Dec. 2004. http://ieeexplore.ieee.org/document/1359963/
    [6]
    A. Mullane and M. OMalley, "The inertial response of inductionmachine-based wind turbines, " IEEE Tran. Power Syst. , vol. 20, no. 3, pp. 1496-1503, Aug. 2005.
    [7]
    G. Lalor, A. Mullane, and M. O'Malley, "Frequency control and wind turbine technologies, " IEEE Tran. Power Syst. , vol. 20, no. 4, pp. 1905-1913, Nov. 2005. http://ieeexplore.ieee.org/iel5/59/32618/01525120.pdf?arnumber=1525120
    [8]
    J. Morren, S. W. H. de Haan, W. L. Kling, and J. A. Ferreira, "Wind turbines emulating inertia and supporting primary frequency control, " IEEE Tran. Power Syst. , vol. 21, no. 1, pp. 433-434, Feb. 2006. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1583744
    [9]
    P. K. Keung, P. Li, H. Banakar, and B. T. Ooi, "Kinetic energy of windturbine generators for system frequency support, " IEEE Tran. Power Syst. , vol. 24, no. 1, pp. 279-287, Feb. 2009. http://ieeexplore.ieee.org/document/4717220/
    [10]
    J. F. Conroy and R. Watson, "Frequency response capability of full converter wind turbine generators in comparison to conventional generation, " IEEE Trans. Power Syst. , vol. 23, no. 2, pp. 649-656, May 2008. http://ieeexplore.ieee.org/document/4494589/
    [11]
    M. Kayikci and J. V. Milanovic, "Dynamic contribution of dfig-based wind plants to system frequency disturbances, " IEEE Trans. Power Syst. , vol. 24, no. 2, pp. 859-867, May 2009. http://ieeexplore.ieee.org/document/4808229/
    [12]
    Z. X. Miao, L. L. Fan, D. Osborn, and S. Yuvarajan, "Wind farms with HVdc delivery in inertial response and primary frequency control, " IEEE Trans. Energ. Conv. , vol. 25, no. 4, pp. 1171-1178, Dec. 2010. doi: 10.1007/978-1-4471-2201-2_19
    [13]
    X. R. Zhu, Y. Wang, L. Xu, X. Y. Zhang, and H. M. Li, "Virtual inertia control of DFIG-based wind turbines for dynamic grid frequency support, " Proc. IET Conf. Renewable Power Generation, Edinburgh, UK, 2011, pp. 1-6. http://ieeexplore.ieee.org/document/6136135/
    [14]
    J. B. Zhu, C. D. Booth, G. P. Adam, A. J. Roscoe, and C. G. Bright, "Inertia emulation control strategy for VSC-HVDC transmission systems, " IEEE Tran. Power Syst. , vol. 28, no. 2, pp. 1277-1287, May 2013. http://www.sciencedirect.com/science/article/pii/S0378779615000553
    [15]
    G. Delille, B. François, and G. Malarange, "Dynamic frequency control support by energy storage to reduce the impact of wind and solar generation on isolated power systems Inertia, " IEEE Tran. Sustain. Energ. , vol. 3, no. 4, pp. 931-939, Oct. 2012. http://ieeexplore.ieee.org/document/6268312/
    [16]
    W. Zhang, Y. L. Xu, W. X. Liu, F. Ferrese, and L. M. Liu, "Fully distributed coordination of multiple DFIGs in a microgrid for load sharing, " IEEE Tran. Smart Grid, vol. 4, no. 2, pp. 806-815, June. 2013. http://ieeexplore.ieee.org/document/6477195/
    [17]
    Y. L. Xu, W. Zhang, W. X. Liu, X. Wang, F. Ferrese, C. Z. Zang, and H. B. Yu, "Distributed subgradient-based coordination of multiple renewable generators in a microgrid, " IEEE Tran. Power Syst. , vol. 29, no. 1, pp. 23-33, Jan. 2014. http://ieeexplore.ieee.org/document/6607249/

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (1114) PDF downloads(122) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return