A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 5 Issue 2
Mar.  2018

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 6.171, Top 11% (SCI Q1)
    CiteScore: 11.2, Top 5% (Q1)
    Google Scholar h5-index: 51, TOP 8
Turn off MathJax
Article Contents
Shuhui Bi, Lei Wang, Shengjun Wen and Mingcong Deng, "Operator-Based Robust Nonlinear Control for SISO and MIMO Nonlinear Systems With PI Hysteresis," IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 523-530, Mar. 2018. doi: 10.1109/JAS.2016.7510175
Citation: Shuhui Bi, Lei Wang, Shengjun Wen and Mingcong Deng, "Operator-Based Robust Nonlinear Control for SISO and MIMO Nonlinear Systems With PI Hysteresis," IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 523-530, Mar. 2018. doi: 10.1109/JAS.2016.7510175

Operator-Based Robust Nonlinear Control for SISO and MIMO Nonlinear Systems With PI Hysteresis

doi: 10.1109/JAS.2016.7510175

the National Natural Science Foundation of China 61203229

More Information
  • In this paper, operator based robust nonlinear control for single-input single-output (SISO) and multi-input multi-output (MIMO) nonlinear uncertain systems preceded by generalized Prandtl-Ishlinskii (PI) hysteresis is considered respectively. In detail, by using operator based robust right coprime factorization approach, the control system design structures including feedforward and feedback controllers for both SISO and MIMO nonlinear uncertain systems are given, respectively. In which, the controller design includes the information of PI hysteresis and its inverse, and some sufficient conditions for the controllers in both SISO and MIMO systems should be satisfied are also derived respectively. Based on the proposed conditions, influence from hysteresis is rejected, the systems are robustly stable and output tracking performance can be realized. Finally, the effectiveness of the proposed method is confirmed by numerical simulations.


  • loading
  • [1]
    M. Brokate and J. Sprekels, Hysteresis and Phase Transitions. New York: Springer-Verlag, 1996.
    J. W. Macki, P. Nistri, and P. Zecca, "Mathematical models for hysteresis, " SIAM Rev. , vol. 35, no. 1, pp. 94-123, Mar. 1993.
    M. A. Krasnoskl'skii and A. V. Pokrovskii, Systems with Hysteresis. Moscow, Russia: Nauka, 1983.
    M. Rakotondrabe, "Bouc-Wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators, " IEEE Trans. Automat. Sci. Eng. , vol. 8, no. 2, pp. 428-431, Apr. 2011. http://ieeexplore.ieee.org/document/5604686/
    G. Tao and F. L. Lewis, Adaptive Control of Nonsmooth Dynamic Systems. New York: Springer-Verlag, 2001. doi: 10.1007/978-1-4471-3687-3
    C. Y. Su, Y. Stepanenko, J. Svoboda, and T. P. Leung, "Robust adaptive control of a class of nonlinear systems with unknown backlash-Like hysteresis, " IEEE Trans. Automat. Control, vol. 45, no. 12, pp. 2427-2432, Dec. 2000. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=895588
    R. V. Iyer, X. B. Tan, and P. S. Krishnaprasad, "Approximate inversion of the Preisach hysteresis operator with application to control of smart actuators, " IEEE Trans. Automat. Control, vol. 50, no. 6, pp. 798-810, Jun. 2005. http://ieeexplore.ieee.org/document/1440565/
    B. B. Ren, S. S. Ge, C. Y. Su, and T. H. Lee, "Adaptive neural control for a class of uncertain nonlinear systems in pure-feedback form with hysteresis input, " IEEE Trans. Syst. Man Cybern. B Cybern. , vol. 39, no. 2, pp. 431-443, Apr. 2009. http://www.ncbi.nlm.nih.gov/pubmed/19095551
    Y. J. Liu, S. C. Tong, C. L. P. Chen, and D. J. Li, "Neural controller design-based adaptive control for nonlinear MIMO systems with unknown hysteresis inputs, " IEEE Trans. Cybern. , vol. 46, no. 1, pp. 9-19, Jan. 2016. http://www.ncbi.nlm.nih.gov/pubmed/25898325
    Y. J. Liu and S. C. Tong, "Adaptive fuzzy control for a class of unknown nonlinear dynamical systems, " Fuzzy Sets Syst. , vol. 263, pp. 49-70, Mar. 2015. http://dl.acm.org/citation.cfm?id=2741194
    M. Al Janaideh, S. Rakheja, and C. Y. Su, "An analytical generalized prandtl-ishlinskii model inversion for hysteresis compensation in micropositioning control, " IEEE/ASME Trans. Mech. , vol. 16, no. 4, pp. 734-744, Aug. 2011. http://ieeexplore.ieee.org/document/5510155/
    X. K. Chen and T. Ozaki, "Adaptive control for plants in the presence of actuator and sensor uncertain hysteresis, " IEEE Trans. Automat. Control, vol. 56, no. 1, pp. 171-177, Jan. 2011. http://ieeexplore.ieee.org/document/5594993/
    J. Zhou, C. Y. Wen, and T. S. Li, "Adaptive output feedback control of uncertain nonlinear systems with hysteresis nonlinearity, " IEEE Trans. Automat. Control, vol. 57, no. 10, pp. 2627-2633, Oct. 2012. http://ieeexplore.ieee.org/document/6166451/
    L. Chua and S. Bass, "A generalized hysteresis model, " IEEE Trans. Circuit. Theory vol. 19, no. 1, pp. 36-48, Jan. 1972. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1083416
    A. Bańos, "Stabilization of nonlinear systems based on a generalized Bezout identity, " Automatica, vol. 32, no. 4, pp. 591-595, Apr. 1996. http://dl.acm.org/citation.cfm?id=236161
    S. H. Bi and M. C. Deng, "Operator-based robust control design for nonlinear plants with perturbation, " Int. J. Control, vol. 84, no. 4, pp. 815-821, Apr. 2011. doi: 10.1080/00207179.2011.582155?journalCode=tcon20
    S. H. Bi, M. C. Deng, L. Wang, and Y. G. Zhao, "Operator-based robust control for MIMO non-linear systems with uncertain hysteresis, " Int. J. Adv. Mech. Syst. , vol. 4, no. 5-6, pp. 212-220, Jan. 2012. http://www.ingentaconnect.com/content/ind/ijamechs/2012/00000004/F0020005/art00002
    S. Bi, M. Deng, and S. Wen, "Operator-based output tracking control for non-linear uncertain systems with unknown time-varying delays, " IET Control Theory Appl. , vol. 5, no. 5, pp. 693-699, Mar. 2011. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5759117
    S. H. Bi, X. L. Wang, J. H. Zheng, and L. Wang, "Operator-based robust nonlinear control for system with generalized PI hysteresis, " in Proc. 2014 Int. Conf. Advanced Mechatronic Systems, Kumamoto, Japan, 2014, pp. 19-42. http://ieeexplore.ieee.org/document/6911620/
    S. H. Bi, Y. F. Xiao, X. J. Fan, and M. C. Deng, "Operator-based robust decoupling control for MIMO nonlinear systems, " in Proc. 11th World Congr. Intelligent Control and Automation, Shenyang, China, 2014, pp. 2602-2606. http://ieeexplore.ieee.org/document/7053135/
    G. R. Chen and Z. Z. Han, "Robust right coprime factorization and robust stabilization of nonlinear feedback control systems, " IEEE Trans. Automat. Control, vol. 43, no. 10, pp. 1505-1509, Oct. 1998. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=720519
    M. C. Deng, A. Inoue, and Y. Baba, "Operator-based non-linear vibration control system design of a flexible arm with Piezoelectric actuator, " Int. J. Adv. Mech. Syst. , vol. 1, no. 1, pp. 71-76, Jan. 2008. http://www.mendeley.com/research/operator-based-non-linear-vibration-control-system-design-flexible-arm-piezoelectric-actuator/
    M. C. Deng, A. Inoue, and K. Ishikawa, "Operator-based nonlinear feedback control design using robust right coprime factorization, " IEEE Trans. Automat. Control, vol. 51, no. 4, pp. 645-648, Apr. 2006. http://ieeexplore.ieee.org/document/1618840/
    S. H. Bi, M. C. Deng, and Y. F. Xiao, "Robust stability and tracking for operator-based nonlinear uncertain systems, " IEEE Trans. Automat. Sci. Eng. , vol. 12, no. 3, pp. 1059-1066, Jul. 2015. http://ieeexplore.ieee.org/document/6832636/
    S. H. Bi, L. Wang, Y. G. Zhao, and M. C. Deng, "Operator-based robust control for nonlinear uncertain systems with unknown backlash-like hysteresis, " Int. J. Control Automat. Syst. , vol. 14, no. 2, pp. 469-477, Apr. 2016. doi: 10.1007/s12555-014-0449-x


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (1013) PDF downloads(56) Cited by()


    DownLoad:  Full-Size Img  PowerPoint