IEEE/CAA Journal of Automatica Sinica
Citation:  Najeeb Alam Khan and Tooba Hameed, "An Implementation of Haar Wavelet Based Method for Numerical Treatment of Timefractional Schrodinger and Coupled Schrödinger Systems," IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 177187, Jan. 2019. doi: 10.1109/JAS.2016.7510193 
[1] 
K. Diethelm, The Analysis of Fractional Differential Equations. Berlin, Germany: SpringerVerlag, 2010.

[2] 
I. Podlubny, Fractional Differential Equations. San Diego, USA: Academic Press, 1999.

[3] 
M. G. Sakar, F. Erdogan, and A. Yildirim, "Variational iteration method for the timefractional FornbergWhitham equation, " Computers and Mathematics with Applications, vol. 63, no. 9, pp. 13821388, 2012. doi: 10.1016/j.camwa.2012.01.031

[4] 
J. C. Liu, and G. L. Hou, "Numerical solutions of the space and timefractional coupled Burgers equations by generalized differential transform method, " Applied Mathematics and Computation, vol. 217, no. 16, pp. 70017008, 2011. doi: 10.1016/j.amc.2011.01.111

[5] 
N. A. Khan, M. Jamil, and Ara A, "Approximate solutions to timefractional Schrödinger equation via Homotopy analysis method, " ISRN Mathematical Physics, vol. 2012: Article ID 197068, 2012. https://www.researchgate.net/publication/258403640_Approximate_Solutions_to_TimeFractional_Schrodinger_Equation_via_Homotopy_Analysis_Method

[6] 
A. H. Bhrawy, E. H. Doha, S. S. EzzEldien, and R. A. Van Gorder, "A new Jacobi spectral collocation method for solving $</elementcitation>+1$ fractional Schrödinger equations and fractional coupled Schrödinger systems, " The European Physical J. Plus, vol. 129, no. 260, pp. 2014.

[7] 
A. H. Bhrawy and M. A. Zaky, "A method based on the Jacobi tau approximation for solving multiterm timespace fractional partial differential equations, " J. Computational Physics, vol. 281, pp. 876895, 2015. doi: 10.1016/j.jcp.2014.10.060

[8] 
A. Bhrawy and M. Zaky, "A fractionalorder Jacobi Tau method for a class of timefractional PDEs with variable coefficients, " Mathematical Methods in the Applied Sciences, vol. 39, no. 7, pp. 17651779, 2016. doi: 10.1002/mma.v39.7

[9] 
Z. J. Fu, W. Chen, and H. T. Yang, "Boundary particle method for Laplace transformed time fractional diffusion equations, " J. Computational Physics, vol. 235, pp. 5266. 2013. doi: 10.1016/j.jcp.2012.10.018

[10] 
H. Aminikhah, A. R. Sheikhani, and H. Rezazadeh, "An efficient method for timefractional coupled Schrödinger system, " International J. Partial Differential Equations, vol. 2014: Article ID 137470. 2014. https://www.researchgate.net/publication/267142224_An_Efficient_Method_for_TimeFractional_Coupled_Schrodinger_System

[11] 
V. DaftardarGejji and A. Babakhani, "Analysis of a system of fractional differential equations, " J. Mathematical Analysis and Applications, vol. 293, no.2, pp. 511522, 2004. doi: 10.1016/j.jmaa.2004.01.013

[12] 
V. DaftardarGejji and H. Jafari, "Adomian decomposition: a tool for solving a system of fractional differential equations, " J. Mathematical Analysis and Applications, vol. 301, no. 2, pp. 508518, 2005. doi: 10.1016/j.jmaa.2004.07.039

[13] 
Y. J. Jiang and J. T. Ma, "Highorder finite element methods for timefractional partial differential equations, " J. Computational and Applied Mathematics, vol. 235, no. 11, pp. 32853290, 2011. doi: 10.1016/j.cam.2011.01.011

[14] 
Y. Z. Hu, Y. Luo, and Z. Y. Lu, "Analytical solution of the linear fractional differential equation by Adomian decomposition method, " J. Computational and Applied Mathematics, vol. 215, no.1, pp. 220229, 2008. doi: 10.1016/j.cam.2007.04.005

[15] 
Z. Odibat and S. Momani, "Numerical methods for nonlinear partial differential equations of fractional order, " Applied Mathematical Modelling, vol. 32, no. 1, pp. 2839, 2008. http://www.sciencedirect.com/science/article/pii/S0307904X06002800

[16] 
A. K. Gupta and S. S. Ray, "Wavelet methods for solving fractional order differential equations, " Mathematical Problems in Engineering, vol. 2014: Article ID 140453, 2014. https://www.researchgate.net/publication/270674415_Wavelet_Methods_for_Solving_Fractional_Order_Differential_Equations

[17] 
A. Setia, Y. C. Liu, and A. S. Vatsala, "Solution of linear fractional Fredholm Integrodifferential equation by using second kind Chebyshev wavelet, " in Proc. of the 11th International Conference on Information Technology: New Generations (ITNG), Las Vegas: IEEE, 2014, 465469. https://www.researchgate.net/publication/262525724_Solution_of_linear_fractional_Fredholm_integrodifferential_equation_by_using_second_kind_Chebyshev_wavelet

[18] 
A. H. Bhrawy, M. M. Tharwat, and A. Yildirim, "A new formula for fractional integrals of Chebyshev polynomials: application for solving multiterm fractional differential equations, " Applied Mathematical Modelling, vol. 37, no. 6, pp. 42454252, 2013. doi: 10.1016/j.apm.2012.08.022

[19] 
A. Setia, Y. C. Liu, and A. S. Vatsala, "Numerical solution of Fredholmvolterra fractional Integrodifferential equations with nonlocal boundary conditions, " J. Fractional Calculus and Applications, vol. 5, no. 2, pp. 155165, 2014. http://adsabs.harvard.edu/abs/2017AIPC.1798b0140S

[20] 
Laskin N, "Fractional quantum mechanics, " Physical Review E, vol. 62, no. 3, Pt A, pp. 31353145, 2000. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232673214/

[21] 
M. ur Rehman and R. A. Khan, "Existence and uniqueness of solutions for multipoint boundary value problems for fractional differential equations, " Applied Mathematics Letters, vol. 23, no. 9, pp. 10381044, 2010. doi: 10.1016/j.aml.2010.04.033

[22] 
M. ur Rehman and R. A. Khan, "Numerical solutions to initial and boundary value problems for linear fractional partial differential equations, " Applied Mathematical Modelling, vol. 37, no. 7, pp. 52335244, 2013. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ffd872eff60990201b68258bea831aad

[23] 
J. Shen and T. Tang, Mathematics Monograph Series, Vol. 3: Spectral and HighOrder Methods with Applications. Beijing, China: Science Press, 2006.

[24] 
A. H. Bhrawy, T. M. Taha, and J. A. T. Machado, "A review of operational matrices and spectral techniques for fractional calculus, " Nonlinear Dynamics, vol. 81, no. 3, pp. 10231052, 2015. doi: 10.1007/s1107101520870

[25] 
E. H. Doha, A. H. Bhrawy, and S. S. EzzEldien, "A new Jacobi operational matrix: an application for solving fractional differential equations, " Applied Mathematical Modelling, vol. 36, no. 10, pp. 49314943, 2012. doi: 10.1016/j.apm.2011.12.031

[26] 
A. H. Bhrawy and M. A. Zaky, "Numerical simulation for twodimensional variableorder fractional nonlinear cable equation, " Nonlinear Dynamics, vol. 80, no. 12, pp. 101116, 2015. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f7b300f3927102b867dabb9c54420213

[27] 
S. G. Mallat, "A theory for multiresolution signal decomposition: the wavelet representation, " IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 11, no. 7, pp. 674693, 1989. doi: 10.1109/34.192463

[28] 
S. Mallat, A Wavelet Tour of Signal Processing, USA: Academic Press, 2009.

[29] 
Ü. Lepik, "Solving PDEs with the aid of twodimensional Haar wavelets, " Computers and Mathematics with Applications, vol. 61, no. 7, pp. 18731879, 2011. doi: 10.1016/j.camwa.2011.02.016

[30] 
S. Islam, I. Aziz, and Šarler B, "The numerical solution of secondorder boundaryvalue problems by collocation method with the Haar wavelets, " Mathematical and Computer Modelling, vol. 52, no. 910, pp. 15771590, 2010. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7b9c64c06d4b3f25a71f76fc1c7ec799

[31] 
Y. L. Li and W. W. Zhao, "Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations, " Applied Mathematics and Computation, vol. 216, no.8, pp. 22762285, 2010. doi: 10.1016/j.amc.2010.03.063

[32] 
L. F. Wang, Y. P. Ma, and Z. J. Meng, "Haar wavelet method for solving fractional partial differential equations numerically, " Applied Mathematics and Computation, vol. 227, pp. 6676, 2014. doi: 10.1016/j.amc.2013.11.004

[33] 
A. Mohebbi, M. Abbaszadeh, and M. Dehghan, "The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation arising in quantum mechanics, " Engineering Analysis with Boundary Elements, vol. 37, no. 2, pp. 475485, 2013. doi: 10.1016/j.enganabound.2012.12.002

[34] 
D. L. Wang, A. G. Xiao, and W. Yang, "CrankNicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative, " J. Computational Physics, vol. 242, pp. 670 681, 2013. doi: 10.1016/j.jcp.2013.02.037

[35] 
L. L. Wei, X. D. Zhang, S. Kumar, and A. Yildirim, "A numerical study based on an implicit fully discrete local discontinuous Galerkin method for the timefractional coupled Schrödinger system, " Computers and Mathematics with Applications, vol. 64, no. 8, pp. 26032615, 2012. doi: 10.1016/j.camwa.2012.07.004

[36] 
A. H. Bhrawy and M. A. Abdelkawy, "A fully spectral collocation approximation for multidimensional fractional Schrödinger equations, " J. Computational Physics, vol. 294, pp. 462483, 2015. doi: 10.1016/j.jcp.2015.03.063

[37] 
X. Y. Guo and M. Y. Xu, "Some physical applications of fractional Schrödinger equation, " J. Mathematical Physics, vol. 47, pp. 082104, 2006. doi: 10.1063/1.2235026

[38] 
Y. C. Wei, "Some solutions to the fractional and relativistic Schrödinger equations, " International J. Theoretical and Mathematical Physics, vol. 5 no. 5, 87111, 2015. doi: 10.5923.j.ijtmp.20150505.03.html

[39] 
C. H. Wang, "On the generalization of block pulse operational matrices for fractional and operational calculus, " J. Franklin Institute, vol. 315, no. 2, 91102, 1983. doi: 10.1016/00160032(83)900698
