A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 4 Issue 4
Oct.  2017

IEEE/CAA Journal of Automatica Sinica

• JCR Impact Factor: 6.171, Top 11% (SCI Q1)
CiteScore: 11.2, Top 5% (Q1)
Google Scholar h5-index: 51， TOP 8
Turn off MathJax
Article Contents
Yang Yang and Dingyu Xue, "Modified Grey Model Predictor Design Using Optimal Fractional-order Accumulation Calculus," IEEE/CAA J. Autom. Sinica, vol. 4, no. 4, pp. 724-733, Oct. 2017. doi: 10.1109/JAS.2017.7510355
 Citation: Yang Yang and Dingyu Xue, "Modified Grey Model Predictor Design Using Optimal Fractional-order Accumulation Calculus," IEEE/CAA J. Autom. Sinica, vol. 4, no. 4, pp. 724-733, Oct. 2017.

# Modified Grey Model Predictor Design Using Optimal Fractional-order Accumulation Calculus

##### doi: 10.1109/JAS.2017.7510355
Funds:

the National Natural Science Foundation of China 61174145

• The major advantage of grey system theory is that both incomplete information and unclear problems can be processed precisely. Considering that the modeling of grey model (GM) depends on the preprocessing of the original data, the fractional-order accumulation calculus could be used to do preprocessing. In this paper, the residual sequence represented by Fourier series is used to ameliorate performance of the fractionalorder accumulation GM(1, 1) and improve the accuracy of predictor. The state space model of optimally modified GM(1, 1) predictor is given and genetic algorithm (GA) is used to find the smallest relative error during the modeling step. Furthermore, the fractional form of continuous GM(1, 1) is given to enlarge the content of prediction model. The simulation results illustrated that the fractional-order calculus could be used to depict the GM precisely with more degrees of freedom. Meanwhile, the ranges of the parameters and model application could be enlarged with better performance. The method of modified GM predictor using optimal fractional-order accumulation calculus is expected to be widely used in data processing, model theory, prediction control and related fields.

•  [1] J. L. Deng, "Introduction to grey system theory, " J. Grey Syst. , vol. 1, no. 1, pp. 1-24, 1989. http://dl.acm.org/citation.cfm?id=90758 [2] Y. C. Lee, C. H. Wu, and S. B. Tsai, "Grey system theory and fuzzy time series forecasting for the growth of green electronic materials, " Int. J. Prod. Res. , vol. 52, no. 10, pp. 2931-2945, May 2014. [3] X. Q. Wang, L. Qi, C. Chen, J. F. Tang, and M. Jiang, "Grey System Theory based prediction for topic trend on Internet, " Eng. Appl. Artif. Intell. , vol. 29, pp. 191-200, Mar. 2014. http://www.sciencedirect.com/science/article/pii/S095219761300239X [4] X. Y. Liu, H. Q. Peng, Y. Bai, Y. J. Zhu, and L. L. Liao, "Tourism flows prediction based on an improved grey GM(1, 1) model, " Proc. -Soc. Behav. Sci. , vol. 138, pp. 767-775, Jul. 2014. [5] X. P. Xiao, H. Guo, and S. H. Mao, "The modeling mechanism, extension and optimization of grey GM(1, 1) model, " Appl. Math. Modell. , vol. 38, no. 5-6, pp. 1896-1910, Mar. 2014. http://www.sciencedirect.com/science/article/pii/S0307904X13006161 [6] S. Abbasbandy, M. S. Hashemi, and I. Hashim, "On convergence of homotopy analysis method and its application to fractional integrodifferential equations, " Quaest. Math. , vol. 36, no. 1, pp. 93-105, Apr. 2013. [7] R. Garrappa and M. Popolizio, "Exponential quadrature rules for linear fractional differential equations, " Mediterr. J. Math. , vol. 12, no. 1, pp. 219-244, Feb. 2015. [8] S. Shen, F. Liu, V. Anh, and I. Turner, "Detailed analysis of a conservative difference approximation for the time fractional diffusion equation, " J. Appl. Math. Comput. , vol. 22, no. 3, pp. 1-19, Oct. 2006. [9] M. A. Abdelkawy and T. M. Taha, "An operational matrix of fractional derivatives of Laguerre polynomials, " Walailak J. Sci. Technol. , vol. 11, no. 12, pp. 1041-1055, Jan. 2014. https://www.researchgate.net/publication/286302507_An_Operational_Matrix_of_Fractional_Derivatives_of_Laguerre_Polynomials [10] D. Y. Xue, C. N. Zhao, and F. Pan, "Simulation model method and application of fractional order nonlinear system, " J. Syst. Simulat. , vol. 18, no. 9, pp. 2405-2408, Sep. 2006. http://en.cnki.com.cn/Article_en/CJFDTotal-XTFZ200609008.htm [11] D. Valério and J. S. Costa, "Ninteger: A non-integer control toolbox for Matlab, " in emphProc. 1st IFAC Workshop on Fractional Differentiation and Its Applications, Bordeaux, France, 2004, pp. 208-213. http://www.researchgate.net/publication/228993622_Ninteger_a_non-integer_control_toolbox_for_MatLab [12] A. Tepljakov, E. Petlenkov, and J. Belikov, "FOMCON: A MATLAB toolbox for fractional-order system identification and control, " Int. J. Microelectron. Comput. Sci. , vol. 2, no. 2, pp. 51-62, Jan. 2011. http://www.researchgate.net/publication/259741855_FOMCON_a_MATLAB_toolbox_for_fractional-order_system_identification_and_control [13] M. Rachid, B. Maamar, and D. Said, "Comparison between two approximation methods of state space fractional systems, " Signal Process. , vol. 91, no. 3, pp. 461-469, Mar. 2011. http://www.researchgate.net/publication/220228301_Comparison_between_two_approximation_methods_of_state_space_fractional_systems?_sg=o15eVHWRSh6XKE0__rhwXIlz0u-ipo-14UWhUSBjf0gPcFvuYPoWS4168s-zrw7eFkKPQiErqQFt1M0654mheQ [14] J. Sabatier, C. Farges, and J. C. Trigeassou, "Fractional systems state space description: some wrong ideas and proposed solutions, " J. Vib. Control, vol. 20, no. 7, pp. 1076-1084, May 2014. http://www.researchgate.net/publication/274949773_Fractional_systems_state_space_description_some_wrong_ideas_and_proposed_solutions [15] H. S. Ahn, Y. Q. Chen, and I. Podlubny, "Robust stability test of a class of linear time-invariant interval fractional-order system using Lyapunov inequality, " Appl. Math. Comput. , vol. 187, no. 1, pp. 27-34, Apr. 2007. http://www.sciencedirect.com/science/article/pii/S0096300306011337 [16] S. Victor, R. Malti, H. Garnier, and A. Oustaloup, "Parameter and differentiation order estimation in fractional models, " Automatica, vol. 49, no. 4, pp. 926-935, Apr. 2013. http://www.sciencedirect.com/science/article/pii/S0005109813000277 [17] L. F. Wu, S. F. Liu, and J. Liu, "GM(1, 1) model based on fractional order accumulating method and its stability, " Control Decis. , vol. 29, no. 5, pp. 919-924, May 2014. http://www.researchgate.net/publication/288731994_GM1_1_model_based_on_fractional_order_accumulating_method_and_its_Stability [18] L. F. Wu, S. F. Liu, L. G. Yao, S. L. Yan, and D. L. Liu, "Grey system model with the fractional order accumulation, " Commun. Nonlinear Sci. Numer. Simulat. , vol. 18, no. 7, pp. 1775-1785, Jul. 2013. http://www.sciencedirect.com/science/article/pii/S1007570412005400 [19] L. F. Wu, S. F. Liu, W. Cui, D. L. Liu, and T. X. Yao, "Nonhomogenous discrete grey model with fractional-order accumulation, " Neural Comput. Appl. , vol. 25, no. 5, pp. 1215-1221, Oct. 2014. [20] L. F. Wu, S. F. Liu, L. G. Yao, R. T. Xu, and X. P. Lei, "Using fractional order accumulation to reduce errors from inverse accumulated generating operator of grey model, " Soft Comput. , vol. 19, no. 2, pp. 483-488, Feb. 2015. [21] J. F. Liu, S. F. Liu, L. F. Wu, and Z. G. Fang, "Fractional order reverse accumulative discrete grey model and its application, " Syst. Eng. Electron. , vol. 38, no. 3, pp. 719-724, Mar. 2016. http://www.researchgate.net/publication/299453817_Fractional_order_reverse_accumulative_discrete_grey_model_and_its_application [22] S. H. Mao, M. Y. Gao, and X. P. Xiao, "Fractional order accumulation time-lag GM(1, N, τ) model and its application, " Syst. Eng. Theory Pract. , vol. 35, no. 2, pp. 430-436, Feb. 2015. http://www.sysengi.com/EN/Y2015/V35/I2/430 [23] L. C. Hsu, "Applying the grey prediction model to the global integrated circuit industry, " Technol. Forecast. Soc. Change, vol. 70, no. 6, pp. 563-574, Jul. 2003. http://www.sciencedirect.com/science/article/pii/S0040162502001956 [24] M. T. Liang, G. F. Zhao, C. W. Chang, and C. H. Liang, "Evaluating the carbonation damage to concrete bridges using a grey forecasting model combined with a statistical method, " J. Chinese Inst. Eng. , vol. 24, no. 1, pp. 85-94, Jan. 2001. [25] Z. X. Wang, "Grey forecasting method for small sample oscillating sequences based on Fourier series, " Control Decis. , vol. 29, no. 2, pp. 270-274, Feb. 2014. http://en.cnki.com.cn/Article_en/CJFDTotal-KZYC201402014.htm [26] D. A. Benson, M. M. Meerschaert, and J. Revielle, "Fractional calculus in hydrologic modeling: A numerical perspective, " Adv. Water Resour. , vol. 51, pp. 479-497, Jan. 2013. http://www.sciencedirect.com/science/article/pii/S0309170812000899 [27] J. Sabatier, P. Lanusse, P. Melchior, and A. Oustaloup, Fractional Order Differentiation and Robust Control Design:CRONE, H∞ and Motion Control. Netherlands:Springer, 2015. [28] E. A. Yucra, J. I. Yuz, and G. C. Goodwin, "Sampling zeros of discrete models for fractional order systems, " IEEE Trans. Automat. Control, vol. 58, no. 9, pp. 2383-2388, Sep. 2013. http://ieeexplore.ieee.org/document/6484106 [29] D. A. Cao, Theory of Accumulation. Beijing: Science Press, 2011, pp. 163-177. [30] C. I. Chen and S. J. Huang, "The necessary and sufficient condition for GM(1, 1) grey prediction model, " Appl. Math. Computat. , vol. 219, no. 11, pp. 6152-6162, Feb. 2013. http://www.sciencedirect.com/science/article/pii/S0096300312012829 [31] S. F. Liu and Y. Lin, Grey Information: Theory and Practical Applications. London: Springer-Verlag, 2006, pp. 194-216. [32] X. P. Xiao and S. H. Mao, Grey Prediction and Decision Methods. Beijing: Science Press, 2013, pp. 165-201. [33] M. H. Moradi and M. Abedini, "A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems, " Int. J. Electr. Power Energy Syst. , vol. 34, no. 1, pp. 66-74, Jan. 2012. http://ieeexplore.ieee.org/document/5697086/citations [34] Y. H. Lin and P. C. Lee, "Novel high-precision grey forecasting model, " Automat. Construct. , vol. 16, no. 6, pp. 771-777, Sep. 2007. http://www.sciencedirect.com/science/article/pii/S0926580507000234 [35] C. A. Monje, Y. Q. Chen, B. M. Vinagre, D. Y. Xue, and V. Feliu-Batlle, Fractional-order Systems and Controls: Fundamentals and Applications, London: Springer-Verlag, 2010, pp. 60-65.

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142

Figures(8)  / Tables(4)

## Article Metrics

Article views (1095) PDF downloads(118) Cited by()

/