A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 5 Issue 2
Mar.  2018

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 6.171, Top 11% (SCI Q1)
    CiteScore: 11.2, Top 5% (Q1)
    Google Scholar h5-index: 51, TOP 8
Turn off MathJax
Article Contents
Jianming Wei, Youan Zhang and Hu Bao, "An Exploration on Adaptive Iterative Learning Control for a Class of Commensurate High-order Uncertain Nonlinear Fractional Order Systems," IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 618-627, Mar. 2018. doi: 10.1109/JAS.2017.7510361
Citation: Jianming Wei, Youan Zhang and Hu Bao, "An Exploration on Adaptive Iterative Learning Control for a Class of Commensurate High-order Uncertain Nonlinear Fractional Order Systems," IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 618-627, Mar. 2018. doi: 10.1109/JAS.2017.7510361

An Exploration on Adaptive Iterative Learning Control for a Class of Commensurate High-order Uncertain Nonlinear Fractional Order Systems

doi: 10.1109/JAS.2017.7510361
Funds:

the National Natural Science Foundation of China 60674090

Shandong Natural Science Foundation ZR2017QF016

More Information
  • This paper explores the adaptive iterative learning control method in the control of fractional order systems for the first time. An adaptive iterative learning control (AILC) scheme is presented for a class of commensurate high-order uncertain nonlinear fractional order systems in the presence of disturbance. To facilitate the controller design, a sliding mode surface of tracking errors is designed by using sufficient conditions of linear fractional order systems. To relax the assumption of the identical initial condition in iterative learning control (ILC), a new boundary layer function is proposed by employing Mittag-Leffler function. The uncertainty in the system is compensated for by utilizing radial basis function neural network. Fractional order differential type updating laws and difference type learning law are designed to estimate unknown constant parameters and time-varying parameter, respectively. The hyperbolic tangent function and a convergent series sequence are used to design robust control term for neural network approximation error and bounded disturbance, simultaneously guaranteeing the learning convergence along iteration. The system output is proved to converge to a small neighborhood of the desired trajectory by constructing Lyapnov-like composite energy function (CEF) containing new integral type Lyapunov function, while keeping all the closed-loop signals bounded. Finally, a simulation example is presented to verify the effectiveness of the proposed approach.

     

  • loading
  • [1]
    S. Arimoto, S. Kawamura, and F. Miyazaki, "Bettering operation of robots by learning, " J. Robot. Syst. , vol. 1, no. 2, pp. 123-140, Jun. 1984. doi: 10.1002/rob.4620010203/pdf
    [2]
    T. Y. Kuc, K. Nam, and J. S. Lee, "An iterative learning control of robot manipulators, " IEEE Trans. Robot. Automat. , vol. 7, no. 6, pp. 835-841, Dec. 1991. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=105392
    [3]
    Y. Q. Chen and C. Y. Wen, Iterative Learning Control: Convergence, Robustness and Applications. London: Spring-Verlag, 1999.
    [4]
    Z. Bien and J. X. Xu, Iterative Learning Control: Analysis, Design, Integration and Applications. Boston, USA: Kluwer Academic Publisher, 1998.
    [5]
    J. X. Xu and Y. Tan, Linear and Nonlinear Iterative Learning Control. Berlin: Springer-Verlag, 2003.
    [6]
    J. X. Xu and Z. H. Qu, "Robust iterative learning control for a class of nonlinear systems, " Automatica, vol. 34, no. 8, pp. 983-988, Aug. 1998. http://www.sciencedirect.com/science/article/pii/S0005109898000363
    [7]
    M. French and E. Rogers, "Non-linear iterative learning by an adaptive Lyapunov technique, " Int. J. Control, vol. 73, no. 10, pp. 840-850, Nov. 2000. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=760617&pageNumber%3D33958%26rowsPerPage%3D100
    [8]
    J. X. Xu and Y. Tan, "A composite energy function-based learning control approach for nonlinear systems with time-varying parametric uncertainties, " IEEE Trans. Automat. Control, vol. 47, no. 11, pp. 1940-1945, Nov. 2002. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1231269
    [9]
    R. H. Chi, Z. S. Hou, and J. X. Xu, "Adaptive ILC for a class of discrete-time systems with iteration-varying trajectory and random initial condition, " Automatica, vol. 44, no. 8, pp. 2207-2213, Aug. 2008. http://dl.acm.org/citation.cfm?id=1390977
    [10]
    R. H. Chi, S. L. Sui, and Z. S. Hou, "A new discrete-time adaptive ILC for nonlinear systems with time-varying parametric uncertainties, " Acta Automat. Sinica, vol. 34, no. 7, pp. 805-808, Jul. 2008. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=moto200807013&dbname=CJFD&dbcode=CJFQ
    [11]
    C. K. Yin, J. X. Xu, and Z. S. Hou, "An ILC scheme for a class of nonlinear continuous-time systems with time-iteration-varying parameters subject to second-order internal model, " Asian J. Control, vol. 13, no. 1, pp. 126-135, Jan. 2011. doi: 10.1002/asjc.320/full
    [12]
    R. K. Zhang, Z. S. Hou, R. H. Chi, and H. H. Ji, "Adaptive iterative learning control for nonlinearly parameterised systems with unknown time-varying delays and input saturations, " Int. J. Control, vol. 88, no. 6, pp. 1133-1141, Jun. 2015. doi: 10.1080/00207179.2014.994103?journalCode=tcon20
    [13]
    Y. C. Wang, C. J. Chien, and C. C. Teng, "Direct adaptive iterative learning control of nonlinear systems using an output-recurrent fuzzy neural network, " IEEE Trans. Syst. Man Cybern. B: Cybern. , vol. 34, no. 3, pp. 1348-1359, Jun. 2004. http://www.ncbi.nlm.nih.gov/pubmed/15484908
    [14]
    C. J. Chien, "A combined adaptive law for fuzzy iterative learning control of nonlinear systems with varying control tasks, " IEEE Trans. Fuzzy Syst. , vol. 16, no. 1, pp. 40-51, Feb. 2008. http://ieeexplore.ieee.org/document/4358812/
    [15]
    Y. C. Wang and C. J. Chien, "Decentralized adaptive fuzzy neural iterative learning control for nonaffine nonlinear interconnected systems, " Asian J. Control, vol. 13, no. 1, pp. 94-106, Jan. 2011. doi: 10.1002/asjc.299/full
    [16]
    C. L. Zhang and J. M. Li, "Adaptive iterative learning control for nonlinear pure-feedback systems with initial state error based on fuzzy approximation, " J. Franklin Inst. , vol. 351, no. 3, pp. 1483-1500, Mar. 2014.
    [17]
    I. Podlubny, Fractional Differential Equations: an Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications. New York: Academic Press, 1999.
    [18]
    I. Petráš, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Berlin: Spring-Verlag, 2011.
    [19]
    J. D. Gabano and T. Poinot, "Fractional modelling and identification of thermal systems, " Signal Process. , vol. 91, no. 3, pp. 531-541, Mar. 2011. http://www.sciencedirect.com/science/article/pii/S0165168410000654
    [20]
    Y. Luo and Y. Q. Chen, "Stabilizing and robust fractional order PI controller synthesis for first order plus time delay systems, " Automatica, vol. 48, no. 9, pp. 2159-2167, Sep. 2012.
    [21]
    M. Ö. Efe, "Fractional fuzzy adaptive sliding-mode control of a 2-DOF direct-drive robot arm, " IEEE Trans. Syst. Man Cybern. B: Cybern. , vol. 38, no. 6, pp. 1561-1570, Dec. 2008. http://europepmc.org/abstract/MED/19022726
    [22]
    H. Delavari, R. Ghaderi, A. Ranjbar, and S. Momani, "Fuzzy fractional order sliding mode controller for nonlinear systems, " Commun. Nonlinear Sci. Numer. Simulat. , vol. 15, no. 4, pp. 963-978, Apr. 2010. http://www.sciencedirect.com/science/article/pii/S1007570409002743
    [23]
    J. Li, J. G. Lu, and Y. Q. Chen, "Robust decentralized control of perturbed fractional-order linear interconnected systems, " Comput. Math. Appl. , vol. 66, no. 5, pp. 844-859, Sep. 2013. http://dl.acm.org/citation.cfm?id=2513705.2513924
    [24]
    X. D. Tang, G. Tao, and S. M. Joshi, "Adaptive actuator failure compensation for parametric strict feedback systems and an aircraft application, " Automatica, vol. 39, no. 11, pp. 1975-1982, Nov. 2003. http://www.sciencedirect.com/science/article/pii/S000510980300219X
    [25]
    X. S. Wang, C. Y. Su, and H. Hong, "Robust adaptive control of a class of nonlinear systems with unknown dead-zone, " Automatica, vol. 40, no. 3, pp. 407-413, Mar. 2004. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=981134
    [26]
    T. P. Zhang and S. S. Ge, "Adaptive neural control of MIMO nonlinear state time-varying delay systems with unknown dead-zones and gain signs, " Automatica, vol. 43, no. 6, pp. 1021-1033, Jun. 2007. http://dl.acm.org/citation.cfm?id=1241349
    [27]
    T. P. Zhang and S. S. Ge, "Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form, " Automatica, vol. 44, no. 7, pp. 1895-1903, Jul. 2008.
    [28]
    J. X. Xu, J. Xu, and T. H. Lee, "Iterative learning control for systems with input deadzone, " IEEE Trans. Automatic Control, vol. 50, no. 9, pp. 1455-1459, Sep. 2005. http://ieeexplore.ieee.org/document/1506962/
    [29]
    A. Razminia and D. F. M. Torres, "Control of a novel chaotic fractional order system using a state feedback technique, " Mechatronics, vol. 23, no. 7, pp. 755-763, Oct. 2013. http://www.sciencedirect.com/science/article/pii/S0957415813000445
    [30]
    C. L. Li, K. L. Su, J. Zhang, and D. Q. Wei, "Robust control for fractional-order four-wing hyperchaotic system using LMI, " Optik, vol. 124, no. 22, pp. 5807-5810, Nov. 2013. http://www.sciencedirect.com/science/article/pii/S0030402613005664
    [31]
    C. Yin, S. Dadras, S. M. Zhong, and Y. Q. Chen, "Control of a novel class of fractional-order chaotic systems via adaptive sliding mode control approach, " Appl. Math. Modell. , vol. 37, no. 4, pp. 2469-2483, Feb. 2013. http://www.sciencedirect.com/science/article/pii/S0307904X12003587
    [32]
    C. C. Yang and C. J. Ou, "Adaptive terminal sliding mode control subject to input nonlinearity for synchronization of chaotic gyros, " Commun. Nonlinear Sci. Numer. Simulat. , vol. 18, no. 3, pp. 682-691, Mar. 2013. http://www.sciencedirect.com/science/article/pii/S1007570412003024
    [33]
    X. Huang, Z. Wang, Y. X. Li, and J. W. Lu, "Design of fuzzy state feedback controller for robust stabilization of uncertain fractional-order chaotic systems, " J. Franklin Inst. , vol. 351, no. 12, pp. 5480-5493, Dec. 2014. http://www.sciencedirect.com/science/article/pii/S0016003214002786
    [34]
    I. Pan, S. Das, and S. Das, "Multi-objective active control policy design for commensurate and incommensurate fractional order chaotic financial systems, " Appl. Math. Modell. , vol. 39, no. 2, pp. 500-514, Jan. 2015. http://www.sciencedirect.com/science/article/pii/S0307904X14003084
    [35]
    S. Bhalekar and V. Daftardar-Gejji, "Synchronization of different fractional order chaotic systems using active control, " Commun. Nonlinear Sci. Numer. Simulat. , vol. 15, no. 11, pp. 3536-3546, Nov. 2010. http://www.sciencedirect.com/science/article/pii/S1007570409006352
    [36]
    T. Z. Li, Y. Wang, and Y. Yang, "Designing synchronization schemes for fractional-order chaotic system via a single state fractional-order controller, " Optik, vol. 125, no. 22, pp. 6700-6705, Nov. 2014. http://www.sciencedirect.com/science/article/pii/S0030402614010389
    [37]
    S. K. Agrawal and S. Das, "Function projective synchronization between four dimensional chaotic systems with uncertain parameters using modified adaptive control method, " J. Process Contr. , vol. 24, no. 5, pp. 517-530, May 2014. http://www.sciencedirect.com/science/article/pii/S095915241400064X
    [38]
    L. K. Gao, Z. H. Wang, K. Zhou, W. J. Zhu, Z. D. Wu, and T. D. Ma, "Modified sliding mode synchronization of typical three-dimensional fractional-order chaotic systems, " Neurocomputing, vol. 166, pp. 53-58, Oct. 2015. http://www.sciencedirect.com/science/article/pii/S0925231215004786
    [39]
    Y. Gao, C. H. Liang, Q. Q. Wu, and H. Y. Yuan, "A new fractional-order hyperchaotic system and its modified projective synchronization, " Chaos Soliton. Fract. , vol. 76, pp. 190-204, Jul. 2015. http://www.sciencedirect.com/science/article/pii/S0960077915001149
    [40]
    Y. Q. Chen and K. L. Moore, "On $D. {\alpha}$-type iterative learning control, " in Proc. 40th IEEE Conference on Decision and Control, Orlando, Florida, USA, 2001. pp. 4451-4456.
    [41]
    H. S. Ahn, K. L. Moore, and Y. Q. Chen, "Stability analysis of discrete-time iterative learning control systems with interval uncertainty, " Automatica, vol. 43, no. 5, pp. 892-902, May 2007. http://dl.acm.org/citation.cfm?id=1235940
    [42]
    Y. Li, Y. Q. Chen, and H. S. Ahn, "Fractional order iterative learning control, " in ICROS-SICE International Joint Conference 2009, Fukuoka, Japan, pp. 3106-3110, 2009. http://ieeexplore.ieee.org/document/5334041/
    [43]
    H. S. Li, J. C. Huang, D. Liu, J. H. Zhang, and F. L. Teng, "Design of fractional order iterative learning control on frequency domain, " in Proc. 2011 IEEE International Conference on Mechatronics and Automation, Beijing, China, pp. 2056-2060, 2011.
    [44]
    Y. Li, Y. Q. Chen, and H. S. Ahn, "A generalized fractional-order iterative learning control, " in Proc. 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), Orlando, USA, pp. 5356-5361, 2011. https://www.researchgate.net/publication/254054833_A_generalized_fractional-order_iterative_learning_control
    [45]
    Y. Li, Y. Q. Chen, and H. S. Ahn, "On the $PD. {\alpha}$-type iterative learning control for the fractional-order nonlinear systems, " in Proc. 2011 American Control Conference, San Francisco, CA, USA, pp. 4320-4325, 2011.
    [46]
    Y. H. Lan, "Iterative learning control with initial state learning for fractional order nonlinear systems, " Comput. Math. Appl. , vol. 64, no. 10, pp. 3210-3216, Nov. 2012. http://dl.acm.org/citation.cfm?id=2397030
    [47]
    Y. Li, Y. Q. Chen, and H. S. Ahn, "On P-type fractional order iterative learning identification, " in Proc. 13th International Conference on Control, Automation and Systems, Gwangju, Korea, 2013. pp. 219-225. http://ieeexplore.ieee.org/document/6703897/
    [48]
    Y. H. Lan and Y. Zhou, "$D. {\alpha}$ type iterative learning control for fractional-order linear time-delay systems, " Asian J. Control, vol. 15, no. 3, pp. 669 -677, 2013.
    [49]
    Y. Li, L. Zhai, Y. Q. Chen, and H. S. Ahn, "Fractional-order iterative learning control and identification for fractional-order Hammerstein system, " in Proc. 11th World Congress on Intelligent Control and Automation, Shenyang, China, pp. 840-845, 2014. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=7052825
    [50]
    Y. Li, Y. Q. Chen, and H. S. Ahn, "Fractional order iterative learning control for fractional order system with unknown initialization, " in Proceedings of the 2014 American Control Conference (ACC), Portland, Oregon, USA, pp. 5712-5717, 2014. http://ieeexplore.ieee.org/document/6859010/
    [51]
    Y. Li, Y. Q. Chen, and H. S. Ahn, "A high-gain adaptive fractional-order iterative learning control, " in Proc. 11th IEEE International Conference on Control & Automation (ICCA), Taiwan, China, pp. 1150-1155, 2014. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6871084
    [52]
    M. Lazarević and P. Mandić, "Feedback-feedforward iterative learning control for fractional order uncertain time delay system-PD $\alpha$ type, " in Proc. 2014 International Conference on Fractional Differentiation and Its Applications (ICFDA), Catania, Italy, pp. 1-6, 2014.
    [53]
    L. Yan and J. Wei, "Fractional order nonlinear systems with delay in iterative learning control, " Appl. Math. Comput. , vol. 257, pp. 546-552, Apr. 2015. http://dl.acm.org/citation.cfm?id=2853865
    [54]
    A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations. The Netherlands: Elsevier, pp. 69-83, 2006. http://www.researchgate.net/publication/216225153_Theory_and_Applications_of_Fractional_Differential_Equations?ev=pub_cit
    [55]
    D. Matignon, "Stability results for fractional differential equations with applications to control processing, " in Computational Engineering in Systems and Applications, Lille, France, pp. 963-968, 1996.
    [56]
    J. Sabatier, M. Moze, and C. Farges, "LMI stability conditions for fractional order systems, " Comput. Math. Appl. , vol. 59, no. 5, pp. 1594-1609, Mar. 2010. http://dl.acm.org/citation.cfm?id=1746951
    [57]
    J. C. Trigeassou, N. Maamri, and A. Oustaloup, "Lyapunov stability of linear fractional systems: part 1-definition of fractional energy, " in ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Portland, Oregon, USA, 2013.
    [58]
    M. M. Gupta and D. H. Rao, Neuro-Control Systems: Theory and Applications. New York, USA: IEEE Press, 1994.
    [59]
    M. M. Polycarpou, "Stable adaptive neural control scheme for nonlinear systems, " IEEE Trans. Automatic Control, vol. 41, no. 3, pp. 447-451, Mar. 1996. http://www.emeraldinsight.com/servlet/linkout?suffix=b18&dbid=16&doi=10.1108%2F17563781011094214&key=10.1109%2F9.486648
    [60]
    S. Zhu, M. X. Sun, and X. X. He, "Iterative learning control of strict-feedback nonlinear time-varying systems, " Acta Automat. Sinica, vol. 36, no. 3, pp. 454-458, Mar. 2010. http://www.ams.org/mathscinet-getitem?mr=2676602

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (848) PDF downloads(125) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return