A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 4 Issue 4
Oct.  2017

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 6.171, Top 11% (SCI Q1)
    CiteScore: 11.2, Top 5% (Q1)
    Google Scholar h5-index: 51, TOP 8
Turn off MathJax
Article Contents
Magdi S. Mahmoud and Mohammad T. Nasir, "Robust Control Design of Wheeled Inverted Pendulum Assistant Robot," IEEE/CAA J. Autom. Sinica, vol. 4, no. 4, pp. 628-638, Oct. 2017. doi: 10.1109/JAS.2017.7510613
Citation: Magdi S. Mahmoud and Mohammad T. Nasir, "Robust Control Design of Wheeled Inverted Pendulum Assistant Robot," IEEE/CAA J. Autom. Sinica, vol. 4, no. 4, pp. 628-638, Oct. 2017. doi: 10.1109/JAS.2017.7510613

Robust Control Design of Wheeled Inverted Pendulum Assistant Robot

doi: 10.1109/JAS.2017.7510613
Funds:

the Deanship of Scientific Research (DSR) at the King Fahd University of Petroleum and Minerals (KFUPM) 141048

More Information
  • This paper examines the design concept and mobile control strategy of the human assistant robot I-PENTAR (inverted pendulum type assistant robot). The motion equation is derived considering the non-holonomic constraint of the twowheeled mobile robot. Different optimal control approaches are applied to a linearized model of I-PENTAR. These include linear quadratic regulator (LQR), linear quadratic Gaussian control (LQG), H2 control and H control. Simulation is performed for all the approaches yielding good performance results.

     

  • loading
  • [1]
    S. Jeong and T. Takahashi, "Wheeled inverted pendulum type assistant robot: Design concept and mobile control, " Intell. Serv. Rob. , vol. 1, no. 4, pp. 313-320, Oct. 2008. doi: 10. 1007/s11370-008-0024-5
    [2]
    A. Sinha, P. Prasoon, P. K. Bharadwaj, and A. C. Ranasinghe, "Nonlinear autonomous control of a two-wheeled inverted pendulum mobile robot based on sliding mode, " in Proc. Int. Conf. Computational Intelligence and Networks (CINE), Bhubaneshwar, India, 2015, pp. 52-57. http: //ieeexplore. ieee. org/document/7053803/
    [3]
    J. Huang, S. Ri, L. Liu, Y. J. Wang, J. Kim, and G. Pak, "Nonlinear disturbance observer-based dynamic surface control of mobile wheeled inverted pendulum, " IEEE Trans. Control Syst. Technol. , vol. 23, no. 6, pp. 2400-2407, Nov. 2015. http: //ieeexplore. ieee. org/document/7054455/
    [4]
    M. A. H. Garzón, W. O. C. Hernández, A. P. G. Reyes, and O. E. C. Quintero, "Two-wheeled inverted pendulum robot NXT Lego Mindstorms: mathematical modelling and real robot comparisons, " Rev. Politécnica, vol. 36, no. 1, Sep. 2015. http: //revistapolitecnica. epn. edu. ec/ojs2/index. php/revista_politecnica2/article/view/462
    [5]
    M. M. Azimi and H. R. Koofigar, "Model predictive control for a two wheeled self balancing robot, " in Proc. 1st RSI/ISM Int. Conf. Robotics and Mechatronics (ICRoM), Tehran, Iran, 2013, pp. 152-157. http: //ieeexplore. ieee. org/document/6510097/
    [6]
    Z. J. Li, C. G. Yang, and L. P. Fan, Advanced Control of Wheeled Inverted Pendulum Systems. New York, London, USA: Springer, 2013.
    [7]
    Z. J. Li and C. Q. Xu, "Adaptive fuzzy logic control of dynamic balance and motion for wheeled inverted pendulums, " Fuzzy Sets Syst. , vol. 160, no. 12, pp. 1787-1803, Jun. 2009. http: //www. ams. org/mathscinet-getitem?mr=2555719
    [8]
    S. Jung and S. S. Kim, "Control experiment of a wheel-driven mobile inverted pendulum using neural network, " IEEE Trans. Control Syst. Technol. , vol. 16, no. 2, pp. 297-303, Mar. 2008. http: //ieeexplore. ieee. org/document/4431881/
    [9]
    J. Huang, Z. H. Guan, T. Matsuno, T. Fukuda, and K. Sekiyama, "Sliding-mode velocity control of mobile-wheeled inverted-pendulum systems, " IEEE Trans. Robot. , vol. 26, no. 4, pp. 750-758, Aug. 2010. http: //ieeexplore. ieee. org/document/5512655/
    [10]
    C. G. Yang, Z. J. Li, and J. Li, "Trajectory planning and optimized adaptive control for a class of wheeled inverted pendulum vehicle models, " IEEE Trans. Cybern. , vol. 43, no. 1, pp. 24-36, Feb. 2013. http: //www. ncbi. nlm. nih. gov/pubmed/22695357
    [11]
    Z. C. Li, Y. Wang, and Z. Liu, "Unscented Kalman filter-trained neural networks for slip model prediction, " PLoS One, vol. 11, no. 7, pp. e0158492, Jul. 2016, doi: 10.1371/journal.pone.0158492.
    [12]
    J. Moreno-Valenzuela, C. Aguilar-Avelar, S. Puga-Guzmán, and V. Santibáñez, "Two adaptive control strategies for trajectory tracking of the inertia wheel pendulum: neural networks vis á vis model regressor, " Intell. Autom. Soft Comput. , vol. 23, no. 1, pp. 63-73, Jan. 2016. doi: 10. 1080/10798587. 2015. 1121618
    [13]
    R. X. Cui, J. Guo, and Z. Y. Mao, "Adaptive backstepping control of wheeled inverted pendulums models, " Nonlinear Dyn. , vol. 79, no. 1, pp. 501-511, Jan. 2015. doi: 10. 1007/s11071-014-1682-9
    [14]
    Y. Maruki, K. Kawano, H. Suemitsu, and T. Matsuo, "Adaptive backstepping control of wheeled inverted pendulum with velocity estimator, " Int. J. Control Autom. Syst. , vol. 12, no. 5, pp. 1040-1048, Oct. 2014. doi: 10. 1007/s11071-014-1682-9
    [15]
    H. Vasudevan, A. M. Dollar, and J. B. Morrell, "Design for control of wheeled inverted pendulum platforms, " J. Mech. Rob. , vol. 7, no. 4, pp. 041005, Nov. 2015. doi: 10. 1115/1. 4029401
    [16]
    S. Jeong and T. Takahashi, "Wheeled inverted pendulum type assistant robot: Inverted mobile, standing, and sitting motions, " in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, San Diego, CA, USA, 2007, pp. 1932-1937. http: //ieeexplore. ieee. org/xpls/icp. jsp?arnumber=4398961
    [17]
    K. Pathak, J. Franch, and S. K. Agrawal, "Velocity and position control of a wheeled inverted pendulum by partial feedback linearization, " IEEE Trans. Robot. , vol. 21, no. 3, pp. 505-513, Jun. 2005. http: //dl. acm. org/citation. cfm?id=2211760
    [18]
    "Matlab Documents, " MPC guide, Mathworks, USA.
    [19]
    B. D. O. Anderson and J. B. Moore, Linear Optimal Control. Englewood Cliffs, NJ, USA: Prentice-Hall, Inc. , 1971.
    [20]
    M. S. Mahmoud and Y. Q. Xia, Applied Control Systems Design: State-Space Methods. London, UK: Springer-Verlag, 2012.
    [21]
    K. M. Zhou and J. C. Doyle, Essentials of Robust Control. New Jersey, USA: Prentice-Hall, 1998.
    [22]
    M. S. Mahmoud, Resilient Control of Uncertain Dynamical Systems. Berlin, Heidelberg, Germany: Springer, 2004.
    [23]
    M. S. Mahmoud and A. Y. Al-Rayyah, "Efficient parameterisation to stability and feedback synthesis of linear time-delay systems, " IET Control Theory Appl. , vol. 3, no. 8, pp. 1107-1118, Aug. 2009. http: //ieeexplore. ieee. org/xpls/abs_all. jsp?arnumber=5186347
    [24]
    M. S. Mahmoud and Y. Q. Xia, "Robust filter design for piecewise discrete-time systems with time-varying delays, " Int. J. Robust Nonlinear Control, vol. 20, no. 5, pp. 544-560, Mar. 2010. http: //www. ams. org/mathscinet-getitem?mr=2642943

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(1)

    Article Metrics

    Article views (1285) PDF downloads(263) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return