A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 4 Issue 4
Oct.  2017

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 6.171, Top 11% (SCI Q1)
    CiteScore: 11.2, Top 5% (Q1)
    Google Scholar h5-index: 51, TOP 8
Turn off MathJax
Article Contents
Shuping He and Jun Song, "Finite-time Sliding Mode Control Design for a Class of Uncertain Conic Nonlinear Systems," IEEE/CAA J. Autom. Sinica, vol. 4, no. 4, pp. 809-816, Oct. 2017. doi: 10.1109/JAS.2017.7510643
Citation: Shuping He and Jun Song, "Finite-time Sliding Mode Control Design for a Class of Uncertain Conic Nonlinear Systems," IEEE/CAA J. Autom. Sinica, vol. 4, no. 4, pp. 809-816, Oct. 2017. doi: 10.1109/JAS.2017.7510643

Finite-time Sliding Mode Control Design for a Class of Uncertain Conic Nonlinear Systems

doi: 10.1109/JAS.2017.7510643
Funds:

the National Natural Science Foundation of China 61673001

the National Natural Science Foundation of China 61203051

the Foundation for Distinguished Young Scholars of Anhui Province 1608085J05

the Key Support Program of University Outstanding Youth Talent of Anhui Province gxydZD201701

More Information
  • This paper studies the sliding mode controller design problems for a class of nonlinear system. The nonlinear function is considered to satisfy conic-type constraint condition. A novel finite-time boundedness (FTB) based sliding mode controller design theory is proposed. And then a sufficient condition is obtained in terms of linear matrix inequalities (LMIs), which guarantees the resulted sliding mode dynamics to be FTB wrt some predefined scalars. Thereafter, a FTB-based sliding mode control (SMC) law is synthesized to ensure the state of the controlled system is driven into a novel desired switching surface s(t)=c (c is a constant) in a finite time. Simulation results illustrate the validity of the proposed FTB-based SMC design theory.

     

  • loading
  • Recommended by Associate Editor Haibo Ji
  • [1]
    P. Dorato, "Short time stability in linear time-varying systems, " in Proc. the IRE Int. Conv. Rec. , New York, UK, 1961, pp. 83-87.
    [2]
    F. Amato, G. de Tommasi, and A. Pironti, "Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems, " Automatica, vol. 49, no. 8, pp. 2546-2550, Aug. 2013. http://www.ams.org/mathscinet-getitem?mr=3072649
    [3]
    Y. Guo, Y. Yao, S. C. Wang, K. M. Ma, K. Liu, and J. Guo, "Input-output finite-time stabilization of linear systems with finite-time boundedness, " ISA Trans. , vol. 53, no. 4, pp. 977-982, Jul. 2014. http://europepmc.org/abstract/med/24947432
    [4]
    Z. G. Yan, G. S. Zhang, and W. H. Zhang, "Finite-time stability and stabilization of linear Itô stochastic systems with state and control-dependent noise, " Asian J. Control, vol. 15, no. 1, pp. 270-281, May 2013. doi: 10.1002/asjc.v15.1
    [5]
    F. Amato, R. Ambrosino, C. Cosentino, and de G. Tommasi, "Inputoutput finite time stabilization of linear systems, " Automatica, vol. 46, no. 9, pp. 1558-1562, Sep. 2010. http://www.sciencedirect.com/science/article/pii/S0005109810002554
    [6]
    F. Amato, M. Ariola, and P. Dorato, "Finite-time control of linear systems subject to parametric uncertainties and disturbances, " Automatica, vol. 37, no. 9, pp. 1459-1463, Sep. 2001. http://www.sciencedirect.com/science/article/pii/S0005109801000875
    [7]
    W. M. Xiang and J. Xiao, "H finite-time control for switched nonlinear discrete-time systems with norm-bounded disturbance, " J. Franklin Inst. , vol. 348, no. 2, pp. 331-352, Jun. 2011. http://www.ams.org/mathscinet-getitem?mr=2771844
    [8]
    M. N. ElBsat and E. E. Yaz, "Robust and resilient finite-time control of a class of continuous-time nonlinear systems, " IFAC Proc. Volumes, vol. 45, no. 13, pp. 15-20, 2012. doi: 10.3182/20120620-3-DK-2025.00145
    [9]
    M. N. ElBsat and E. E. Yaz, "Robust and resilient finite-time bounded control of discrete-time uncertain nonlinear systems, " Automatica, vol. 49, no. 7, pp. 2292-2296, Jul. 2013. http://www.sciencedirect.com/science/article/pii/S0005109813002033
    [10]
    Y. G. Niu and D. W. C. Ho, "Robust observer design for Itô stochastic time-delay systems via sliding mode control, " Syst. Control Lett. , vol. 55, no. 10, pp. 781-793, Oct. 2006. http://www.sciencedirect.com/science/article/pii/S0167691106000570
    [11]
    Y. G. Niu and D. W. C. Ho, "Design of sliding mode control subject to packet losses, " IEEE Trans. Automat. Control, vol. 55, no. 11, pp. 2623-2628, Nov. 2010. http://ieeexplore.ieee.org/document/5555974/
    [12]
    Y. Xia, G. P. Liu, P. Shi, J. Chen, D. Rees, and J. Liang, "Sliding mode control of uncertain linear discrete time systems with input delay, " IET Control Theory Appl. , vol. 1, no. 4, pp. 1169-1175, Jul. 2007. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4271426
    [13]
    F. Gouaisbaut, M. Dambrine, and J. R. Richard, "Robust control of delay systems: a sliding mode control design via LMI, " Syst. Control Lett. , vol. 46, no. 4, pp. 219-230, Jul. 2002. http://www.sciencedirect.com/science/article/pii/S0167691101001992
    [14]
    B. Chen, Y. G. Niu, and Y. Y. Zou, "Adaptive sliding mode control for stochastic Markovian jumping systems with actuator degradation, " Automatica, vol. 49, no. 6, pp. 1748-1754, Jun. 2013. http://www.sciencedirect.com/science/article/pii/S0005109813000782
    [15]
    L. G. Wu and W. X. Zheng, "Passivity-based sliding mode control of uncertain singular time-delay systems, " Automaica, vol. 45, no. 9, pp. 2120-2127, Sep. 2009. http://www.sciencedirect.com/science/article/pii/S0005109809002611
    [16]
    Y. G. Niu, D. W. C. Ho, and J. Lam, "Robust integral sliding mode control for uncertain stochastic systems with time-varying delay, " Automatica, vol. 41, no. 5, pp. 873-880, May 2005. doi: 10.1016/j.automatica.2004.11.035
    [17]
    W. Perruquetti and J. P. Barbot, Sliding Mode Control in Engineering, New York:Marcel Dekker, 2002.
    [18]
    F. Feng, C. S. Jeong, E. E. Yaz, S. C. Schneider, and Y. I. Yaz, "Robust controller design with general criteria for uncertain conic nonlinear systems with disturbances, " Proc. 2013 American Control Conf. , Washington, DC, USA, 2013, 5869-5874. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6580758
    [19]
    C. D. Johnson, "Disturbance-accomodation control:An overview of the subject, " J. Interdiscipl. Mod. Simulat., vol. 3, no. 1, pp. 1-29, 1980.
    [20]
    I. R. Petersen and R. Tempo, "Robust control of uncertain systems:Classical results and recent developments, " Automatica, vol. 50, no. 5, pp. 1315-1335, May 2014. doi: 10.1016/j.automatica.2014.02.042
    [21]
    A. Zemouche and M. Boutayeb, "On LMI conditions to design observers for Lipschitz nonlinear systems, " Automatica, vol. 49, no. 2, pp. 585-591, Feb. 2013. http://www.sciencedirect.com/science/article/pii/S0005109812005651
    [22]
    G. P. Lu, D. W. C. Ho, and L. Zhou, "A note on the existence of a solution and stability for Lipschitz discrete-time descriptor systems, " Automatica, vol. 47, no. 7, pp. 1525-1529, Jul. 2011. http://www.sciencedirect.com/science/article/pii/S0005109811002214
    [23]
    J. Song and S. P. He, "Observer-based finite-time passive control for a class of uncertain time-delayed Lipschitz nonlinear systems, " Trans. Inst. Meas. Control, vol. 36, no. 6, pp. 797-804, Mar. 2014. doi: 10.1177/0142331214524266
    [24]
    L. Huang and X. Mao, "SMC design for robust H control of uncertain stochastic delay systems, " Automatica, vol. 46, no. 2, pp. 405-412, Feb. 2010. http://www.sciencedirect.com/science/article/pii/S0005109809005378
    [25]
    P. P. Khargonekar, I. R. Petersen, and K. Zhou, "Robust stabilization of uncertain linear systems: quadratic stabilizability and H control theory, " IEEE Trans. Automat. Control, vol. 35, no. 3, pp. 356-361, Mar. 1990.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (621) PDF downloads(174) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return