A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 5 Issue 2
Mar.  2018

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 6.171, Top 11% (SCI Q1)
    CiteScore: 11.2, Top 5% (Q1)
    Google Scholar h5-index: 51, TOP 8
Turn off MathJax
Article Contents
Yonghui Sun, Yingxuan Wang, Zhinong Wei, Guoqiang Sun and Xiaopeng Wu, "Robust H∞ Load Frequency Control of Multi-area Power System With Time Delay: A Sliding Mode Control Approach," IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 610-617, Mar. 2018. doi: 10.1109/JAS.2017.7510649
Citation: Yonghui Sun, Yingxuan Wang, Zhinong Wei, Guoqiang Sun and Xiaopeng Wu, "Robust H Load Frequency Control of Multi-area Power System With Time Delay: A Sliding Mode Control Approach," IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 610-617, Mar. 2018. doi: 10.1109/JAS.2017.7510649

Robust H Load Frequency Control of Multi-area Power System With Time Delay: A Sliding Mode Control Approach

doi: 10.1109/JAS.2017.7510649
Funds:

the National Natural Science Foundation of China 61673161

the Natural Science Foundation of Jiangsu Province of China BK20161510

the Fundamental Research Funds for the Central Universities of China 2017B13914

the 111 Project B14022

More Information
  • This paper is devoted to investigate the robust H sliding mode load frequency control (SMLFC) of multi-area power system with time delay. By taking into account stochastic disturbances induced by the integration of renewable energies, a new sliding surface function is constructed to guarantee the fast response and robust performance, then the sliding mode control law is designed to guarantee the reach ability of the sliding surface in a finite-time interval. The sufficient robust frequency stabilization result for multi-area power system with time delay is presented in terms of linear matrix inequalities (LMIs). Finally, a two-area power system is provided to illustrate the usefulness and effectiveness of the obtained results.

     

  • loading
  • [1]
    P. Kundur, Power System Stability and Control. New York, USA: McGraw-Hill Press, 1994.
    [2]
    P. Ju, E. Handschin, and D. Karlsson, "Nonlinear dynamic load modelling: Model and parameter estimation, " IEEE Trans. Power Syst. , vol. 11, no. 4, pp. 1689-1697, Nov. 1996. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=544629
    [3]
    M. A. Sheirah and M. M. Abd-El-Fattah, "Improved load-frequency self-tuning regulator, " Int. J. Control, vol. 39, no. 1, pp. 143-158, Jan. 1984. doi: 10.1080/00207178408933155
    [4]
    M. R. Toulabi, M. Shiroei, and A. M. Ranjbar, "Robust analysis and design of power system load frequency control using the Kharitonov's theorem, " Int. J. Electr. Power Energy Syst. , vol. 55, pp. 51-58, Feb. 2014. http://www.sciencedirect.com/science/article/pii/S0142061513003554
    [5]
    K. Y. Lim, Y. Wang, and R. Zhou, "Robust decentralised load-frequency control of multi-area power systems, " IEE Proc. -Gener., Trans. Distrib. , vol. 143, no. 5, pp. 377-386, Sep. 1996. Robust decentralised load-frequency control of multi-area power systems
    [6]
    L. L. Dong, Y. Zhang, and Z. Q. Gao, "A robust decentralized load frequency controller for interconnected power systems, " ISA Trans. , vol. 51, no. 3, pp. 410-419, May 2012. http://europepmc.org/abstract/MED/22424605
    [7]
    M. Zribi, M. Al-Rashed, and M. Alrifai, "Adaptive decentralized load frequency control of multi-area power systems, " Int. J. Electr. Power Energy Syst. , vol. 27, no. 8, pp. 575-583, Oct. 2005. http://www.sciencedirect.com/science/article/pii/S014206150500089X
    [8]
    F. Daneshfar and H. Bevrani, "Multiobjective design of load frequency control using genetic algorithms, " Int. J. Electr. Power Energy Syst. , vol. 42, no. 1, pp. 257-263, Nov. 2012.
    [9]
    M. R. Sathya and M. M. T. Ansari, "Load frequency control using Bat inspired algorithm based dual mode gain scheduling of PI controllers for interconnected power system, " Int. J. Electr. Power Energy Syst. , vol. 64, pp. 365-374, Jan. 2015. http://www.sciencedirect.com/science/article/pii/S0142061514004773
    [10]
    K. R. Sudha and R. V. Santhi, "Robust decentralized load frequency control of interconnected power system with generation rate constraint using Type-2 fuzzy approach, " Int. J. Electr. Power Energy Syst. , vol. 33, no. 3, pp. 699-707, Mar. 2011. http://www.sciencedirect.com/science/article/pii/S0142061511000135
    [11]
    L. C. Saikia, S. Mishra, N. Sinha, and J. Nanda, "Automatic generation control of a multi area hydrothermal system using reinforced learning neural network controller, " Int. J. Electr. Power Energy Syst. , vol. 33, no. 4, pp. 1101-1108, May 2011. http://www.sciencedirect.com/science/article/pii/S0142061511000573
    [12]
    H. Bevrani, Y. Mitani, and K. Tsuji, "Robust decentralised load-frequency control using an iterative linear matrix inequalities algorithm, " IEE Proc. -Gener., Trans. Distrib. , vol. 151, no. 3, pp. 347-354, May 2004. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1306704
    [13]
    H. X. Wu, K. S. Tsakalis, and G. T. Heydt, "Evaluation of time delay effects to wide-area power system stabilizer design, " IEEE Trans. Power Syst. , vol. 19, no. 4, pp. 1935-1941, Nov. 2004. http://ieeexplore.ieee.org/document/1350833/
    [14]
    X. M. Zhao, Y. H. Sun, C. Yuan, Z. N. Wei, and G. Q. Sun, "Robust load frequency control of multi-area interconnected power system with time delay, " in Proc. 34th Chinese Control Conf. , Hangzhou, China, 2015, pp. 8969-8974. http://ieeexplore.ieee.org/document/7261058/
    [15]
    H. Bevrani and T. Hiyama, "Robust decentralised PI based LFC design for time delay power systems, " Energy Convers. Manage. , vol. 49, no. 2, pp. 193-204, Feb. 2008. http://www.sciencedirect.com/science/article/pii/S0196890407001811
    [16]
    X. F. Yu and K. Tomsovic, "Application of linear matrix inequalities for load frequency control with communication delays, " IEEE Trans. Power Syst. , vol. 19, no. 3, pp. 1508-1515, Aug. 2004. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1318688
    [17]
    L. Jiang, W. Yao, Q. H. Wu, J. Y. Wen, and S. J. Cheng, "Delay-dependent stability for load frequency control with constant and time-varying delays, " IEEE Trans. Power Syst. , vol. 27, no. 2, pp. 932-941, May 2012. http://ieeexplore.ieee.org/document/6080746/
    [18]
    R. Dey, S. Ghosh, G. Ray, and A. Rakshit, "H load frequency control of interconnected power systems with communication delays, " Int. J. Electr. Power Energy Syst. , vol. 42, no. 1, pp. 672-684, Nov. 2012. http://www.sciencedirect.com/science/article/pii/S0142061512000907
    [19]
    C. K. Zhang, L. Jiang, Q. H. Wu, Y. He, and M. Wu, "Delay-dependent robust load frequency control for time delay power systems, " IEEE Trans. Power Syst. , vol. 28, no. 3, pp. 2192-2201, Aug. 2013. http://ieeexplore.ieee.org/document/6414617/
    [20]
    F. Wu, P. Ju, X. P. Zhang, C. Qin, G. J. Peng, H. Huang, and J. Fang, "Modeling, control strategy, and power conditioning for direct-drive wave energy conversion to operate with power grid, " Proc. IEEE, vol. 101, no. 4, pp. 925-941, Apr. 2013. http://ieeexplore.ieee.org/document/6425392/
    [21]
    Y. H. Sun, X. M. Zhao, N. Li, Z. N. Wei, and G. Q. Sun, "Robust stochastic stability of power system with time-varying delay under Gaussian random perturbations, " Neurocomputing, vol. 162, pp. 1-8, Aug. 2015. http://www.sciencedirect.com/science/article/pii/S0925231215004403
    [22]
    V. Utkin, "Variable structure systems with sliding modes, " IEEE Trans. Automat. Control, vol. 22, no. 2, pp. 212-222, Apr. 2017. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1101446
    [23]
    Y. Q. Xia and Y. M. Jia, "Robust sliding-mode control for uncertain time-delay systems: An LMI approach, " IEEE Trans. Automat. Control, vol. 48, no. 6, pp. 1086-1091, Jun. 2003. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1205210
    [24]
    L. G. Wu and D. W. C. Ho, "Sliding mode control of singular stochastic hybrid systems, " Automatica, vol. 46, no. 4, pp. 779-783, Apr. 2010. http://www.sciencedirect.com/science/article/pii/S0005109810000300
    [25]
    S. H. Ding and W. X. Zheng, "Nonsingular terminal sliding mode control of nonlinear second-order systems with input saturation, " Int. J. Robust Nonlin. Control, vol. 26, no. 9, pp. 1857-1872, Jun. 2016. doi: 10.1002/rnc.3381/pdf
    [26]
    H. Y. Li, P. Shi, D. Y. Yao, and L. G. Wu, "Observer-based adaptive sliding mode control for nonlinear Markovian jump systems, " Automatica, vol. 64, pp. 133-142, Feb. 2016. http://www.sciencedirect.com/science/article/pii/S0005109815004719
    [27]
    H. Y. Li, H. J. Gao, P. Shi, and X. D. Zhao, "Fault-tolerant control of Markovian jump stochastic systems via the augmented sliding mode observer approach, " Automatica, vol. 50, no. 7, pp. 1825-1834, Jul. 2014. http://dl.acm.org/citation.cfm?id=2657804
    [28]
    S. H. Ding, J. D. Wang, and W. X. Zheng, "Second-order sliding mode control for nonlinear uncertain systems bounded by positive functions, " IEEE Trans. Ind. Electron. , vol. 62, no. 9, pp. 5899-5909, Sep. 2015. http://ieeexplore.ieee.org/document/7128699/
    [29]
    Y. Mi, Y. Fu, C. S. Wang, and P. Wang, "Decentralized sliding mode load frequency control for multi-area power systems, " IEEE Trans. Power Syst. , vol. 28, no. 4, pp. 4301-4309, Nov. 2013. http://ieeexplore.ieee.org/document/6583238/
    [30]
    D. W. Qian, S. W. Tong, H. Liu, and X. J. Liu, "Load frequency control by neural-network-based integral sliding mode for nonlinear power systems with wind turbines, " Neurocomputing, vol. 173, pp. 875-885, Jan. 2016. http://dl.acm.org/citation.cfm?id=2868840
    [31]
    K. Vrdoljak, N. Perić, and I. Petrović, "Sliding mode based load-frequency control in power systems, " Electr. Power Syst. Res. , vol. 80, no. 5, pp. 514-527, May 2010. http://www.sciencedirect.com/science/article/pii/S0378779609002673
    [32]
    Y. Mi, Y. Fu, D. D. Li, C. S. Wang, P. C. Loh, and P. Wang, "The sliding mode load frequency control for hybrid power system based on disturbance observer, " Int. J. Electr. Power Energy Syst. , vol. 74, pp. 446-452, Jan. 2016. http://www.sciencedirect.com/science/article/pii/S0142061515003002
    [33]
    S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory. Philadelphia, PA, USA: SIAM, 1994.
    [34]
    C. D. Li, J. Q. Yi, and G. Q. Zhang, "On the monotonicity of interval type-2 fuzzy logic systems, " IEEE Trans. Fuzzy Syst. , vol. 22, no. 5, pp. 1197-1212, Oct. 2014. http://ieeexplore.ieee.org/document/6637041/

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (747) PDF downloads(72) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return