A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 5 Issue 1
Jan.  2018

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 6.171, Top 11% (SCI Q1)
    CiteScore: 11.2, Top 5% (Q1)
    Google Scholar h5-index: 51, TOP 8
Turn off MathJax
Article Contents
Niladri Sekhar Tripathy, Indra Narayan Kar and Kolin Paul, "Suboptimal Robust Stabilization of Discrete-time Mismatched Nonlinear System," IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 352-359, Jan. 2018. doi: 10.1109/JAS.2017.7510676
Citation: Niladri Sekhar Tripathy, Indra Narayan Kar and Kolin Paul, "Suboptimal Robust Stabilization of Discrete-time Mismatched Nonlinear System," IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 352-359, Jan. 2018. doi: 10.1109/JAS.2017.7510676

Suboptimal Robust Stabilization of Discrete-time Mismatched Nonlinear System

doi: 10.1109/JAS.2017.7510676
More Information
  • This paper proposes a discrete-time robust control technique for an uncertain nonlinear system. The uncertainty mainly affects the system dynamics due to mismatched parameter variation which is bounded by a predefined known function. In order to compensate the effect of uncertainty, a robust control input is derived by formulating an equivalent optimal control problem for a virtual nominal system with a modified costfunctional. To derive the stabilizing control law for a mismatched system, this paper introduces another control input named as virtual input. This virtual input is not applied directly to stabilize the uncertain system, rather it is used to define a sufficient condition. To solve the nonlinear optimal control problem, a discretetime general Hamilton-Jacobi-Bellman (DT-GHJB) equation is considered and it is approximated numerically through a neural network (NN) implementation. The approximated solution of DTGHJB is used to compute the suboptimal control input for the virtual system. The suboptimal inputs for the virtual system ensure the asymptotic stability of the closed-loop uncertain system. A numerical example is illustrated with simulation results to prove the efficacy of the proposed control algorithm.

     

  • loading
  • [1]
    F. Lin, "An optimal control approach to robust control design", Int. J. Control vol. 73, no.3, pp. 177-186, 2000. doi: 10.1080/002071700219722
    [2]
    F. Lin and R. D. Brandt, "An optimal control approach to robust control of robot manipulators", IEEE Trans. on Robot. and Automat., vol. 14, no. 1, pp. 69-77, 1998. doi: 10.1109/70.660845
    [3]
    F. Lin, W. Zhang and R. D. Brandt, "Robust hovering control of a PVTOL aircraft", IEEE Trans. on Control Syst. Technol., vol. 7, no. 3, pp. 343-351, 1999. doi: 10.1109/87.761054
    [4]
    D. Wang, D. Liu, Q. Zhang, and D. Zhao, "Data-based adaptive critic designs for nonlinear robust optimal control with uncertain dynamics", IEEE Trans. on Syst. Man and Cybern.:Syst., pp.1-12, 2016. doi: 10.1109/tsmc.2015.2492941
    [5]
    D. Wang, D. Liu, and H. Li, "Policy iteration algorithm for online design of robust control for a class of continuous-time nonlinear systems." IEEE Trans. Autom. Sci. Eng., vol. 11, no. 2, pp. 627-632, 2014. doi: 10.1109/TASE.2013.2296206
    [6]
    D. M. Adhyaru, I.N. Kar and M. Gopal, "Fixed final time optimal control approach for bounded robust controller design using Hamilton Jacobi Bellman solution", IET Control Theory and Appl.. vol. 3, no. 9, pp. 1183-1195, 2009. doi: 10.1049/iet-cta.2008.0288
    [7]
    D. M. Adhyaru, I. N. Kar and M. Gopal, "Bounded robust control of systems using neural network based HJB solution", Neural Comput and Applic, vol. 20, no. 1, pp. 91-103, 2011. doi: 10.1007/s00521-010-0441-1
    [8]
    D. Wang, D. Liu, H. Li, B. Luo and H. Ma, "An approximate optimal control approach for robust stabilization of a class of discrete-time nonlinear systems with uncertainties", IEEE Trans. on Syst. Man and Cybern.:Syst., vol. 46, no. 5, pp.1-5, 2016. doi: 10.1109/TSMC.2016.2551182
    [9]
    I R Petersen, "Structural stabilization of uncertain systems:necessity of the matching condition", SIAM J. Control Optim., vol. 23, no.2, pp. 286-296, 1985. doi: 10.1137/0323020
    [10]
    I. N. Kar, "Quadratic stabilization of a collection of linear systems", Int. J. Syst. Sci., vol. 33, no. 2, pp. 153-160, 2002. doi: 10.1080/00207720110091721
    [11]
    Y. A. R. I. Mohamed, "Design and implementation of a robust currentcontrol scheme for a PMSM vector drive with a simple adaptive disturbance observer", IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 1981-1988, 2007. doi: 10.1109/TIE.2007.895074
    [12]
    H. W. Lee, K. C. Kim, and J. Lee, "Review of maglev train technologies", IEEE Trans. Magn., vol. 42, no. 7, pp. 1917-1925, 2006. doi: 10.1109/TMAG.2006.875842
    [13]
    J. Yang, S. Li and X. Yu, "Sliding-mode control for systems with mismatched uncertainties via a disturbance observer", IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 160-169, 2013. doi: 10.1109/TIE.2012.2183841
    [14]
    L. Ma, Z. Wang, Y. Bo and Z. Gua, "Robust H sliding mode control for nonlinear stochastic systems with multiple data packet losses", Int. J. Robust & Nonlin. Control, vol. 22, no. 5, pp. 474-491, 2012. doi: 10.1002/rnc.1695/full
    [15]
    Y. Zheng, G. M. Dimirovski, Y. jing and M. Yang, "Discrete-time sliding mode control of nonlinear systems", American Control Conf., New York City, USA. pp. 3825-3830, 2007. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4282412
    [16]
    H. K. Khalil, Nonlinear Systems, Prentice Hall, 3rd Edition, New Jersey, 2002. http://www.oalib.com/references/16889972
    [17]
    J. Sarangapani, "Neural network control of nonlinear discrete-time systems", CRC press, Florida, USA, 2006. http://www.crcpress.com/product/isbn/9780824726775
    [18]
    R. W. Beard, "Improving the closed-loop performance of nonlinear systems. " Ph. D. diss., Rensselaer Polytechnic Institute, 1995. http://www.mendeley.com/research/improving-closedloop-performance-nonlinear-systems/
    [19]
    R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, UK. 1990. doi: 10.1070/RM1996v051n02ABEH002776/meta
    [20]
    A. Al-Tamini, F. L. Lewis and M. Abu-Khalaf, "Discrete-time nonlinear HJB solution using approximate dynamic programming:Convergence Proof", IEEE Trans. on Syst., Man and Cybern. B:Cybern., vol. 38, no. 4, pp. 943-949, 2008. doi: 10.1109/TSMCB.2008.926614
    [21]
    Z. Chen and S. Jagannathan, "Generalized Hamilton-Jacobi-Bellman formulation-based neural network control of affine nonlinear discretetime systems", IEEE Trans. on Neural Netw., vol. 19, no. 1, pp. 90-106. 2008. doi: 10.1109/TNN.2007.900227
    [22]
    D. S. Naidu, Optimal control systems, CRC press, India, 2009.
    [23]
    I. N. Imam, "The Schur complement and the inverse M-matrix problem", Linear Algebra and its Appl., vol. 62, pp. 235-240, 1984. doi: 10.1016/0024-3795(84)90099-5
    [24]
    B. A. Finlayson, "The method of weighted residuals and variational principles", Academic Press, New York, USA, 1972. http://ci.nii.ac.jp/ncid/BB16203482
    [25]
    N. S. Tripathy, I. N. Kar, and K. Paul, "Stabilization of uncertain discrete-time linear system with limited communication", IEEE Trans. Autom. Control, vol. 62, no. 9, pp. 4727-4733, 2017. doi: 10.1109/TAC.2016.2626967
    [26]
    Z. Gajic and M. T. J. Qureshi, "Lyapunov matrix equation in system stability and control", Dover Publication, New York, USA. 2008. http://ci.nii.ac.jp/ncid/BA25691969
    [27]
    I. R. Petersen, "Linear quadratic differential games with cheap control", Syst. & Control Lett., vol. 8, pp. 181-188, 1986. http://www.sciencedirect.com/science/article/pii/0167691186900770

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (644) PDF downloads(85) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return