IEEE/CAA Journal of Automatica Sinica
Citation:  HongYan Zhang, ZiHao Wang, LuSha Zhou, QianNan Xue, Long Ma and YiFan Niu, "Explicit Symplectic Geometric Algorithms for Quaternion Kinematical Differential Equation," IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 479488, Mar. 2018. doi: 10.1109/JAS.2017.7510829 
[1] 
A. C. Robinson, "On the use of quaternions in simulation of rigidbody motion, " Wright Air Development Center, Tech. Rep., Dec. 1958. https://www.amazon.com/USEQUATERNIONSSIMULATIONRIGIDBODYMOTION/dp/B009B3DON2

[2] 
Y. J. Lu and G. X. Ren, "A symplectic algorithm for dynamics of rigid body, " Appl. Math. Mech., vol. 27, no. 1, pp. 5157, Jan. 2006. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yysl200601007&dbname=CJFD&dbcode=CJFQ

[3] 
B. Wie and P. M. Barba, "Quaternion feedback for spacecraft large angle maneuvers, " J. Guid. Contr. Dynam., vol. 8, no. 3, pp. 360365, May 1985. http://adsabs.harvard.edu/abs/1985JGCD....8..360W

[4] 
B. Wie, H. Weiss, and A. Arapostathis, "Quarternion feedback regulator for spacecraft eigenaxis rotations, " J. Guid. Contr. Dynam., vol. 12, no. 3, pp. 375380, May 1989. http://www.ams.org/mathscinetgetitem?mr=997409

[5] 
B. Wie and J. B. Lu, "Feedback control logic for spacecraft eigenaxis rotations under slew rate and control constraints, " J. Guid. Contr. Dynam., vol. 18, no. 6, pp. 13721379, Nov. 1995. http://adsabs.harvard.edu/abs/1995jgcd...18.1372w

[6] 
B. Wie, D. Bailey, and C. Heiberg, "Rapid multitarget acquisition and pointing control of agile spacecraft, " J. Guid. Contr. Dynam., vol. 25, no. 1, pp. 96104, Jan. 2002. http://dialnet.unirioja.es/servlet/articulo?codigo=672697

[7] 
J. Kuipers, Quaternions and Rotation Sequences:A Primer with Applications to Orbits, Aerospace and Virtual Reality. Princeton:Princeton University Press, 2002.

[8] 
B. Friedland, "Analysis strapdown navigation using quaternions, " IEEE Transactions on Aerospace and Electronic Systems, vol. AES14, no. 5, pp. 764768, Sep. 1978. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4102056

[9] 
A. Kim and M. F. Golnaraghi, "A quaternionbased orientation estimation algorithm using an inertial measurement unit, " in Position Location and Navigation Symp., 2004, Monterey, CA, USA, USA, 2004, pp. 268272. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1309003

[10] 
R. Rogers, Applied Mathematics in Integrated Navigation Systems (third edition). Virginia, USA: AIAA, 2007.

[11] 
Y. M. Zhong, S. S. Gao, and W. Li, "A quaternionbased method for SINS/SAR integrated navigation system, " IEEE Trans. Aerosp. Electron. Syst., vol. 48, no. 1, pp. 514524, Jan. 2012. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6129652

[12] 
M. Zamani, J. Trumpf, and R. Mahony, "Minimumenergy filtering for attitude estimation, " IEEE Trans. Automat. Contr., vol. 58, no. 11, pp. 29172921, Nov. 2013. http://ieeexplore.ieee.org/document/6504725/

[13] 
J. S. Yuan, "Closedloop manipulator control using quaternion feedback, " IEEE J. Robot. Automat., vol. 4, no. 4, pp. 434440, Aug. 1988. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=809

[14] 
J. Funda, R. H. Taylor, and R. P. Paul, "On homogeneous transforms, quaternions, and computational efficiency, " IEEE Trans. Robot. Automat., vol. 6, no. 3, pp. 382388, Jun. 1990. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=56658

[15] 
J. C. K. Chou, "Quaternion kinematic and dynamic differential equations, " IEEE Trans. Robot. Automat., vol. 8, no. 1, pp. 5364, Feb. 1992. http://ieeexplore.ieee.org/document/127239/?denied

[16] 
O. E. Fjellstad and T. I. Fossen, "Position and attitude tracking of AUV's: a quaternion feedback approach, " IEEE J. Oceanic Eng., vol. 19, no. 4, pp. 512518, Oct. 1994. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=338387

[17] 
J. T. Cheng, J. Kim, Z. Y. Jiang, and W. F. Che, "Dual quaternionbased graphical SLAM, " Robot. Autonom. Syst., vol. 77, pp. 1524, Mar. 2016. http://www.sciencedirect.com/science/article/pii/S0921889015003012

[18] 
D. S. Alexiadis and P. Daras, "Quaternionic signal processing techniques for automatic evaluation of dance performances from MoCap data, " IEEE Trans. Multim., vol. 16, no. 5, pp. 13911406, Aug. 2014. http://ieeexplore.ieee.org/document/6797927/

[19] 
F. Dunn and I. Parberry, 3D Math Primer for Graphics and Game Development. Texas:WordWare Publishing Inc., 2002.

[20] 
D. H. Eberly, 3D Game Engine Design:A Practical Approach to Realtime Computer Graphics (Second Edition). Boca Raton:CRC Press, 2006.

[21] 
J. Vince, Quaternions for Computer Graphics. London:Springer, 2011.

[22] 
T. Miller Ⅲ, M. Eleftheriou, P. Pattnaik, A. Ndirango, D. Newns, and G. J. Martyna, "Symplectic quaternion scheme for biophysical molecular dynamics, " J. Chem. Phys., vol. 116, no. 20, pp. 86498659, May 2002. doi: 10.1063/1.1473654

[23] 
J. M. Cooke, M. J. Zyda, D. R. Pratt, and R. B. McGhee, "NPSNET:flight simulation dynamic modeling using quaternions, " Presence:Teleoper. Virt. Environ., vol. 1, no. 4, pp. 404420, 1992. http://dl.acm.org/citation.cfm?id=196548

[24] 
D. Allerton, Principles of Flight Simulation. Wiltshire, UK:John Wiley & Sons, 2009.

[25] 
D. J. Diston, Computational Modelling and Simulation of Aircraft and the Environment, Volume 1:Platform Kinematics and Synthetic Environment. Wiltshire, UK:John Wiley & Sons, 2009.

[26] 
J. S. Berndt, T. Peden, and D. Megginson, "JSBSim, open source flight dynamics software library, "[Online]. Available: http://jsbsim.sourceforge.net/, Jan. 9, 2017.

[27] 
J. Hrastar, "Attitude control of a spacecraft with a strapdown inertial reference system and onboard computer, " NASA, Tech. Rep., Sep. 1970. http://ntrs.nasa.gov/search.jsp?R=19700028241

[28] 
D. C. Cunningham, T. P. Gismondi, and G. W. Wilson, "Control system design of the annular suspension and pointing system, " J. Guid. Contr. Dynam., vol. 3, pp. 1121, May 1980. http://adsabs.harvard.edu/abs/1980JGCD....3...11C

[29] 
R. B. Miller, "A new strapdown attitude algorithm, " J. Guid. Contr. Dynam., vol. 6, no. 4, pp. 287291, Jul. 1983. http://adsabs.harvard.edu/abs/1983jgcd....6..287m

[30] 
R. A. Mayo, "Relative quaternion state transition relation, " J. Guid. Contr. Dynam., vol. 2, pp. 4448, May 1979. doi: 10.2514/3.55830

[31] 
J. C. Butcher, "Coefficients for the study of RungeKutta integration processes, " J. of the Australian Math. Soc., vol. 3, no. 2, pp. 185201, 1963. doi: 10.1017/S1446788700027932

[32] 
S. J. Wang and H. Zhang, "Algebraic dynamics algorithm: Numerical comparison with RungeKutta algorithm and symplectic geometric algorithm, " Sci. China Ser. G: Phys. Mech. Astronom., vol. 50, no. 1, pp. 5369, Feb. 2007. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jgxg200701006&dbname=CJFD&dbcode=CJFQ

[33] 
K. Feng, "On difference schemes and symplectic geometry, " in Proc. 1984 Beijing Symp. Differential Geometry and Differential Equations, Beijing, China, 1984, pp. 4258. http://www.ams.org/mathscinetgetitem?mr=824486

[34] 
R. D. Ruth, "A canonical integration technique, " IEEE Trans. Nuclear Sci., vol. 30, no. 4, pp. 26692671, Mar. 1983. http://adsabs.harvard.edu/abs/1983ITNS...30.2669R

[35] 
K. Feng and M. Z. Qin, "Hamiltonian algorithms for Hamiltonian systems and a comparative numerical study, " Comput. Phys. Commun., vol. 65, no. 13, pp. 173187, Apr. 1991. http://www.sciencedirect.com/science/article/pii/001046559190170P

[36] 
L. H. Kong, R. X. Liu, and X. H. Zheng, "A survey on symplectic and multisymplectic algorithms, " Appl. Math. Comput., vol. 186, no. 1, pp. 670684, Mar. 2007. http://www.sciencedirect.com/science/article/pii/S0096300306009799

[37] 
K. Feng and M. Z. Qin, Symplectic Geometric Algorithms for Hamiltonian systems. Berlin Heidelberg:Springer, 2010.

[38] 
J. M. SanzSerna and M. P. Calvo, Numerical Hamiltonian problems. London:Chapman and Hall/CRC, 1994.

[39] 
E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration:StructurePreserving Algorithms for Ordinary Differential Equations. Berlin Heidelberg:Springer, 2006.

[40] 
J. C. Butcher, "Implicit RungeKutta processes, " Math. Comput., vol. 18, no. 85, pp. 5064, Jan. 1964. http://www.ams.org/mathscinetgetitem?mr=159424

[41] 
A. Iserles, A First Course in the Numerical Analysis of Differential Equations. Cambridge:Cambridge University Press, 1996.

[42] 
J. M. Varah, "On the efficient implementation of implicit RungeKutta methods, " Math. Comput., vol. 33, no. 146, pp. 557561, 1979. http://www.ams.org/mathscinetgetitem?mr=521276

[43] 
V. I. Arnold, Mathematical Methods of Classical Mechanics. New York:Springer, 1989.

[44] 
V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics. Berlin Heidelberg:Springer, 2006.

[45] 
L. H. Kong, J. L. Hong, L. Wang, and F. F. Fu, "Symplectic integrator for nonlinear high order Schrödinger equation with a trapped term, " J. Comput. Appl. Math., vol. 231, no. 2, pp. 664679, Sep. 2009. http://dl.acm.org/citation.cfm?id=1618964

[46] 
J. Franco and I. Gómez, "Construction of explicit symmetric and symplectic methods of RungeKuttaNyström type for solving perturbed oscillators, " Appl. Math. Comput., vol. 219, no. 9, pp. 46374649, Jan. 2013. http://www.sciencedirect.com/science/article/pii/S0096300312010910

[47] 
D. M. Hernandez, "Fast and reliable symplectic integration for planetary system Nbody problems, " Mon. Not. R. Astronom. Soc., vol. 458, no. 4, pp. 42854296, Jun. 2016. http://adsabs.harvard.edu/abs/2016MNRAS.458.4285H

[48] 
V. Guillemin and S. Sternberg, Symplectic Techniques in Physics. Cambridge:Cambridge University Press, 1990.

[49] 
S. Sternberg and Y. Li, Lectures on Symplectic Geometry. Tsinghua University Press, 2012.

[50] 
A. C. da Silva, Lectures on Symplectic Geometry. Berlin Heidelberg:Springer, 2008.
