A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 5 Issue 2
Mar.  2018

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 6.171, Top 11% (SCI Q1)
    CiteScore: 11.2, Top 5% (Q1)
    Google Scholar h5-index: 51, TOP 8
Turn off MathJax
Article Contents
Bei Sun, Chunhua Yang, Hongqiu Zhu, Yonggang Li and Weihua Gui, "Modeling, Optimization, and Control of Solution Purification Process in Zinc Hydrometallurgy," IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 564-576, Mar. 2018. doi: 10.1109/JAS.2017.7510844
Citation: Bei Sun, Chunhua Yang, Hongqiu Zhu, Yonggang Li and Weihua Gui, "Modeling, Optimization, and Control of Solution Purification Process in Zinc Hydrometallurgy," IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 564-576, Mar. 2018. doi: 10.1109/JAS.2017.7510844

Modeling, Optimization, and Control of Solution Purification Process in Zinc Hydrometallurgy

doi: 10.1109/JAS.2017.7510844

the National Natural Science Foundation of China 61603418

the National Natural Science Foundation of China 61673400

the National Natural Science Foundation of China 61273185

the Foundation for Innovative Research Groups of the National Natural Science Foundation of China 61621062

the Innovation-driven Plan in Central South University 2015cx007

More Information
  • The solution purification process is an essential step in zinc hydrometallurgy. The performance of solution purification directly affects the normal functioning and economical benefits of zinc hydrometallurgy. This paper summarizes the authors' recent work on the modeling, optimization, and control of solution purification process. The online measurable property of the oxidation reduction potential (ORP) and the multiple reactors, multiple running statuses characteristic of the solution purification process are extensively utilized in this research. The absence of reliable online equipment for detecting the impurity ion concentration is circumvented by introducing the oxidation-reduction potential into the kinetic model. A steady-state multiple reactors gradient optimization, unsteady-state operational-pattern adjustment strategy, and a process evaluation strategy based on the oxidation-reduction potential are proposed. The effectiveness of the proposed research is demonstrated by its industrial experiment.


  • loading
  • [1]
    W. H. Gui and C. H. Yang, Intelligent Modeling Control and Optimization in Complex Non-ferrous Metallurgical Production Process. Beijing, China:Science Press, 2010.
    B. Sun, W. H. Gui, T. B. Wu, Y. L. Wang, and C. H. Yang, "An integrated prediction model of cobalt ion concentration based on oxidation-reduction potential, " Hydrometallurgy, vol. 140, pp. 102-110, Nov. 2013. http://www.sciencedirect.com/science/article/pii/S0304386X13002028
    K. Svens, "Outotec atmospheric zinc concentrate direct leaching process-past, present and future, " World Metallurgy-ERZMETALL, vol. 63, no. 3, pp. 136-144, May 2010. http://www.researchgate.net/publication/288727943_Outotec_atmospheric_zinc_concentrate_direct_leaching_process_-_Past_present_and_future
    O. Bockman and T. Ostvold, "Products formed during cobalt cementation on zinc in zinc sulfate electrolytes, " Hydrometallurgy, vol. 54, no. 2-3, pp. 65-78, Jan. 2000. http://www.sciencedirect.com/science/article/pii/S0304386X99000596
    B. Sun, W. H. Gui, Y. L. Wang, C. H. Yang, and M. F. He, "A gradient optimization scheme for solution purification process, " Control Eng. Pract. , vol. 44, pp. 89-103, Nov. 2015. http://www.sciencedirect.com/science/article/pii/S0967066115001355
    B. Krause and R. F. Sandenbergh, "Optimization of cobalt removal from an aqueous sulfate zinc leach solution for zinc electrowinning, " Hydrometallurgy, vol. 155, pp. 132-140, May 2015. http://www.sciencedirect.com/science/article/pii/S0304386X15300086
    F. Wu, "LMI-based robust model predictive control and its application to an industrial CSTR problem, " J. Process Control, vol. 11, no. 6, pp. 649-659, Dec. 2001. http://www.sciencedirect.com/science/article/pii/S0959152400000524
    D. L. Yu, T. K. Chang, and D. W. Yu, "A stable self-learning PID control for multivariable time varying systems, " Control Eng. Pract. , vol. 15, no. 12, pp. 1577-1587, Dec. 2007. http://www.sciencedirect.com/science/article/pii/S0967066107000378
    M. P. Di Ciccio, M. Bottini, P. Pepe, and P. U. Foscolo, "Observer-based nonlinear control law for a continuous stirred tank reactor with recycle, " Chem. Eng. Sci. , vol. 66, no. 20, pp. 4780-4797, Oct. 2011. http://www.sciencedirect.com/science/article/pii/S0009250911004246
    H. Hoang, F. Couenne, C. Jallut, and Y. Le Gorrec, "Lyapunov-based control of non isothermal continuous stirred tank reactors using irreversible thermodynamics, " J. Process Control, vol. 22, no. 2, pp. 412-422, Feb. 2012. http://www.sciencedirect.com/science/article/pii/S0959152411002447
    B. Zhang, C. H. Yang, H. Q. Zhu, Y. G. Li, and W. H. Gui, "Kinetic modeling and parameter estimation for competing reactions in copper removal process from zinc sulfate solution, " Ind. Eng. Chem. Res. , vol. 52, no. 48, pp. 17074-17086, Nov. 2013. doi: 10.1021/ie401619h
    B. Sun, W. H. Gui, Y. L. Wang, and C. H. Yang, "Intelligent optimal setting control of a cobalt removal process, " J. Process Control, vol. 24, no. 5, pp. 586-599, May 2014.
    Y. F. Xie, S. W. Xie, X. F. Chen, W. H. Gui, C. H. Yang, and L. Caccetta, "An integrated predictive model with an on-line updating strategy for iron precipitation in zinc hydrometallurgy, " Hydrometallurgy, vol. 151, pp. 62-72, Jan. 2015. http://www.sciencedirect.com/science/article/pii/S0304386X14002515
    J. A. Sȩdzimir, "Precipitation of metals by metals (cementation)-kinetics, equilibria, " Hydrometallurgy, vol. 64, no. 3, pp. 161-167, Jun. 2002. http://www.sciencedirect.com/science/article/pii/S0304386X02000336
    G. W. Wang, C. H. Yang, H. Q. Zhu, Y. G. Li, X. W. Peng, and W. H. Gui, "State-transition-algorithm-based resolution for overlapping linear sweep voltammetric peaks with high signal ratio, " Chemom. Intell. Lab. Syst., vol. 151, pp. 61-70, Feb. 2016. http://www.sciencedirect.com/science/article/pii/S0169743915003238
    B. Zhang, C. H. Yang, H. Q. Zhu, Y. G. Li, and W. H. Gui, "Evaluation strategy for the control of the copper removal process based on oxidation-reduction potential, " Chem. Eng. J. , vol. 284, pp. 294-304, Jan. 2016. http://www.sciencedirect.com/science/article/pii/S1385894715011225
    L. I. Antropov, Theoretical Electrochemistry. Moscow, Russia:Mir Publishers, 1977.
    B. Sun, C. H. Yang, and W. H. Gui, "A discussion of the control of nonferrous metallurgical processes, " IFAC-PapersOnline, vol. 48, no. 17, pp. 80-85, Aug. 2015. http://www.sciencedirect.com/science/article/pii/S2405896315019588
    S. I. Kim, K. E. Kim, E. K. Park, S. W. Song, and S. Jung, "Estimation methods for efficiency of additive in removing impurity in hydrometallurgical purification process, " Hydrometallurgy, vol. 89, no. 3-4, pp. 242-252, Dec. 2007. http://www.sciencedirect.com/science/article/pii/S0304386X07001648
    B. Zhang, C. H. Yang, Y. G. Li, X. L. Wang, H. Q. Zhu, and W. H. Gui, "Additive requirement ratio prediction using trend distribution features for hydrometallurgical purification processes, " Control Eng. Pract. , vol. 46, pp. 10-25, Jan. 2016. http://www.sciencedirect.com/science/article/pii/S0967066115300174
    S. W. Xie, Y. F. Xie, Y. G. Li, C. H. Yang, and W. H. Gui, "Optimal control of oxidizing rate for iron precipitation process in zinc hydrometallurgy, " Acta Autom. Sinica, vol. 41, no. 12, pp. 2036-2046, Dec. 2015. http://www.aas.net.cn/EN/Y2015/V41/I12/2036
    J. Moody and C. J. Darken, "Fast learning in networks of locally-tuned processing units, " Neural Comput. , vol. 1, no. 2, pp. 281-294, Jun. 1989. http://ieeexplore.ieee.org/document/6796477
    S. Seshagiri and H. K. Khalil, "Output feedback control of nonlinear systems using RBF neural networks, " IEEE Trans. Neural Netw., vol. 11, no. 1, pp. 69-79, Jan. 2000.
    H. G. Han, J. F. Qiao, and Q. L. Chen, "Model predictive control of dissolved oxygen concentration based on a self-organizing RBF neural network, " Control Eng. Pract. , vol. 20, no. 4, pp. 465-476, Apr. 2012. http://www.sciencedirect.com/science/article/pii/S0967066112000020
    S. A. Iliyas, M. Elshafei, M. A. Habib, and A. A. Adeniran, "RBF neural network inferential sensor for process emission monitoring, " Control Eng. Pract. , vol. 21, no. 7, pp. 962-970, Jul. 2013. http://www.sciencedirect.com/science/article/pii/S0967066113000099
    T. B. Wu, C. H. Yang, Y. G. Li, H. Q. Zhu, and W. H. Gui, "Fuzzy operational-pattern based operating parameters collaborative optimization of cobalt removal process with arsenic salt, " Acta Autom. Sinica, vol. 40, no. 8, pp. 1690-1698, Aug. 2014. doi: 10.3724/SP.J.1004.2014.01690
    W. H. Gui, C. H. Yang, Y. G. Li, J. J. He, and L. Z. Yin, "Data-driven operational-pattern optimization for copper flash smelting process, " Acta Autom. Sinica, vol. 35, no. 6, pp. 717-724, Jun. 2009. http://www.aas.net.cn/EN/Y2009/V35/I6/717


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(2)

    Article Metrics

    Article views (1287) PDF downloads(142) Cited by()


    DownLoad:  Full-Size Img  PowerPoint