A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 6 Issue 1
Jan.  2019

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 6.171, Top 11% (SCI Q1)
    CiteScore: 11.2, Top 5% (Q1)
    Google Scholar h5-index: 51, TOP 8
Turn off MathJax
Article Contents
Ibrahima N'Doye, Khaled Nabil Salama and Taous-Meriem Laleg-Kirati, "Robust Fractional-Order Proportional-Integral Observer for Synchronization of Chaotic Fractional-Order Systems," IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 268-277, Jan. 2019. doi: 10.1109/JAS.2017.7510874
Citation: Ibrahima N'Doye, Khaled Nabil Salama and Taous-Meriem Laleg-Kirati, "Robust Fractional-Order Proportional-Integral Observer for Synchronization of Chaotic Fractional-Order Systems," IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 268-277, Jan. 2019. doi: 10.1109/JAS.2017.7510874

Robust Fractional-Order Proportional-Integral Observer for Synchronization of Chaotic Fractional-Order Systems

doi: 10.1109/JAS.2017.7510874
More Information
  • In this paper, we propose a robust fractional-order proportional-integral (FOPI) observer for the synchronization of nonlinear fractional-order chaotic systems. The convergence of the observer is proved, and sufficient conditions are derived in terms of linear matrix inequalities (LMIs) approach by using an indirect Lyapunov method. The proposed FOPI observer is robust against Lipschitz additive nonlinear uncertainty. It is also compared to the fractional-order proportional (FOP) observer and its performance is illustrated through simulations done on the fractional-order chaotic Lorenz system.

     

  • loading
  • [1]
    R. Martínez-Guerra, C. A. Pérez-Pinacho, and G. C. Gómez-Cortes, Synchronization of Integral and Fractional Order Chaotic Systems: A Differential Algebraic and Differential Geometric Approach with Selected Applications in Real-Time. Switzerland: Springer, 2015.
    [2]
    H. Nijmeijer and I. M. Y. Mareels, "An observer looks at synchronization, " IEEE Trans. Circ. Syst. I Fund. Theory Appl., vol. 44, no. 10, pp. 882-890, Oct. 1997. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=633877
    [3]
    M. Boutayeb, M. Darouach, and H. Rafaralahy, "Generalized state-space observers for chaotic synchronization and secure communication, " IEEE Trans. Circ. Syst. I Fund. Theory Appl., vol. 49, no. 3, pp. 345-349, Mar. 2002. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=989169
    [4]
    M. Boutayeb, "Synchronization and input recovery in digital nonlinear systems, " IEEE Trans. Circ. Syst. Ⅱ Express Briefs, vol. 51, no. 8, pp. 393-399, Aug. 2004. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1323221
    [5]
    G. P. Jiang, W. X. Zheng, W. K. S. Tang, and G. R. Chen, "Integral-observer-based chaos synchronization, " IEEE Trans. Circ. Syst. Ⅱ Express Briefs, vol. 53, no. 2, pp. 110-114, Feb. 2006. http://ieeexplore.ieee.org/document/1593966
    [6]
    S. Bhalekar and V. Daftardar-Gejji, "Synchronization of different fractional order chaotic systems using active control, " Commun Nonlinear Sci. Numer. Simulat., vol. 15, no. 11, pp. 3536-3546, Nov. 2010. http://connection.ebscohost.com/c/articles/70784992/antisynchronization-nonidentical-fractional-order-chaotic-systems-using-active-control
    [7]
    Y. Tang, Z. D. Wang, and J. A. Fang, "Pinning control of fractional-order weighted complex networks, " Chaos, vol. 19, no. 1, pp. 013112, Apr. 2009. http://www.ncbi.nlm.nih.gov/pubmed/19334976
    [8]
    X. J. Wu, D. R. Lai, and H. T. Lu, "Generalized synchronization of the fractional-order chaos in weighted complex dynamical networks with nonidentical nodes, " Nonlinear Dyn., vol. 69, no. 1-2, pp. 667-683, Jul. 2012. doi: 10.1007/s11071-011-0295-9
    [9]
    L. Pan, W. N. Zhou, J. A. Fang, and D. Q. Li, "Synchronization and anti-synchronization of new uncertain fractional-order modified unified chaotic systems via novel active pinning control, " Commun Nonlinear Sci. Numer. Simulat., vol. 15, no. 12, pp. 3754-3762, Dec. 2010. doi: 10.1007/s11071-010-9728-0
    [10]
    L. Chen, Y. Chai, and R. Wu, "Linear matrix inequality criteria for robust synchronization of uncertain fractional-order chaotic systems, " Chaos, vol. 21, no. 4, pp. 043107, Dec. 2011.
    [11]
    . and E. Solak, "Observer based synchronization of chaotic systems, " Phys. Rev. E, vol. 54, no. 5, 4803-4811, Nov. 1996. http://www.ncbi.nlm.nih.gov/pubmed/9965660
    [12]
    T. L. Liao and N. S. Huang, "An observer-based approach for chaotic synchronization with applications to secure communications, " IEEE Trans. Circ. Syst. I Fund. Theory Appl., vol. 46, no. 9, pp. 1144-1150, Sep. 1999. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=788817
    [13]
    H. H. Niemann, S. Stoustrup, B. Shafai, and S. Beale, "LTR design of proportional-integral observers, " Int. J. Robust Nonlinear Control, vol. 5, no. 7, pp. 671-693, Nov. 1995. doi: 10.1002/rnc.4590050706/full
    [14]
    J. C. Trigeassou, N. Maamri, J. Sabatier, and A. Oustaloup, "A Lyapunov approach to the stability of fractional differential equations, " Signal Process., vol. 91, no. 3, pp. 437-445, Mar. 2011. http://openurl.ebscohost.com/linksvc/linking.aspx?stitle=Signal%20Processing&volume=91&issue=3&spage=437
    [15]
    M. R. Rapaić and A. Pisano, "Variable-order fractional operators for adaptive order and parameter estimation, " IEEE Trans. Autom. Control, vol. 59, no. 3, pp. 798-803, Mar. 2014. http://openurl.ebscohost.com/linksvc/linking.aspx?stitle=IEEE%20Transactions%20on%20Automatic%20Control&volume=59&issue=3&spage=798
    [16]
    E. A. Boroujeni and H. R. Momeni, "Non-fragile nonlinear fractional order observer design for a class of nonlinear fractional order systems, " Signal Process., vol. 92, no. 10, pp. 2365-2370, Oct. 2012. http://openurl.ebscohost.com/linksvc/linking.aspx?stitle=Signal%20Processing&volume=92&issue=10&spage=2365
    [17]
    Y. H. Lan and Y. Zhou, "Non-fragile observer-based robust control for a class of fractional-order nonlinear systems, " Syst. Control Lett., vol. 62, no. 12, pp. 1143-1150, Dec. 2013. http://openurl.ebscohost.com/linksvc/linking.aspx?stitle=Systems%20and%20Control%20Letters&volume=62&issue=12&spage=1143
    [18]
    I. Noye, H. Voos, and M. Darouach, "Observer-based approach for fractional-order chaotic synchronization and secure communication, " IEEE J. Emerg. Sel. Top. Circ. Syst., vol. 3, no. 3, pp. 442-450, Sep. 2013. http://ieeexplore.ieee.org/document/6669423/
    [19]
    I. Podlubny, Fractional Differential Equations. New York, USA: Academic Press, 1999.
    [20]
    S. Das, Functional Fractional Calculus for System Identification and Controls. Berlin Heidelberg, Germany: Springer, 2008.
    [21]
    G. Montseny, "Diffusive representation of pseudo-differential time-operators, " in ESAIM : Fractional Differential Systems: Models, Methods and Applications, vol. 5, pp. 1318-1326, 1998. http://www.ams.org/mathscinet-getitem?mr=1665569
    [22]
    J. Sabatier, C. Farges, and J. C. Trigeassou, "Fractional systems state space description: Some wrong ideas and proposed solutions, " J. Vibrat. Control, vol. 20, no. 7, pp. 1076-1084, Jul. 2014.
    [23]
    D. Heleschewitz and D. Matignon, "Diffusive realizations of fractional integro-differential operators: structure analysis under approximation, " in IFAC Conf. System, Structure and Control, vol. 2, pp. 243-248, 1998.
    [24]
    J. C. Trigeassou and N. Maamri, "Initial conditions and initialization of linear fractional differential equations, " Signal Process., vol. 91, no. 3, pp. 427-436, Mar. 2011. http://openurl.ebscohost.com/linksvc/linking.aspx?stitle=Signal%20Processing&volume=91&issue=3&spage=427
    [25]
    D. Matignon and B. dÁndréa-Novel, "Observer-based controllers for fractional differential systems, " in Proc. 36th Conf. Decision and Control, San Diego, USA, vol. 5, pp. 4967-4972, 1997.
    [26]
    M. Darouach, M. Zasadzinski, and S. J. Xu, "Full-order observers for linear systems with unknown inputs, " IEEE Trans. Autom. Control, vol. 39, no. 3, pp. 606-609, Mar. 1994. http://ieeexplore.ieee.org/iel4/9/6964/00280770.pdf
    [27]
    P. P. Khargonekar, I. R. Petersen, and K. Zhou, "Robust stabilization of uncertain linear systems: Quadratic stabilizability and ${H}_{infty}$ control theory, " IEEE Trans. Autom. Control, vol. 35, no. 3, pp. 356-361, Mar. 1990.
    [28]
    S. Boyd, L. El Ghaoui, E. Féron, and V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory. Philadelphia, USA: SIAM, 1994. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=735454
    [29]
    M. Abbaszadeh and H. J. Marquez, "Robust ${H}_{infty}$ observer design for a class of nonlinear uncertain systems via convex optimization, " in Proc. IEEE American Control Conf., New York, USA, 2007, pp. 1699-1704.
    [30]
    M. Abbaszadeh and H. J. Marquez, "LMI optimization approach to robust ${H}_{infty}$ observer design and static output feedback stabilization for discrete-time nonlinear uncertain systems, " Int. J. Robust Nonlinear Control, vol. 19, no. 3, pp. 313-340, Feb. 2009.
    [31]
    M. Abbaszadeh and H. J. Marquez, "Dynamical robust ${H}_{infty}$ filtering for nonlinear uncertain systems: An LMI approach, " J. Franklin Inst., vol. 347, no. 7, pp. 1227-1241, Sep. 2010.
    [32]
    M. Abbaszadeh and H. J. Marquez, "A generalized framework for robust nonlinear ${H}_{infty}$ filtering of Lipschitz descriptor systems with parametric and nonlinear uncertainties, " Automatica, vol. 48, no. 5, pp. 894-900, May 2012.
    [33]
    I. Grigorenko and E. Grigorenko, "Chaotic dynamics of the fractional Lorenz system, " Phys. Rev. Lett., vol. 91, no. 3, pp. 034101, Jul. 2003. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM12906418

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article views (1051) PDF downloads(49) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return