A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 5 Issue 6
Nov.  2018

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 6.171, Top 11% (SCI Q1)
    CiteScore: 11.2, Top 5% (Q1)
    Google Scholar h5-index: 51, TOP 8
Turn off MathJax
Article Contents
Xue Chen and Yanjiang Wang, "Predicting Resting-state Functional Connectivity With Efficient Structural Connectivity," IEEE/CAA J. Autom. Sinica, vol. 5, no. 6, pp. 1079-1088, Nov. 2018. doi: 10.1109/JAS.2017.7510880
Citation: Xue Chen and Yanjiang Wang, "Predicting Resting-state Functional Connectivity With Efficient Structural Connectivity," IEEE/CAA J. Autom. Sinica, vol. 5, no. 6, pp. 1079-1088, Nov. 2018. doi: 10.1109/JAS.2017.7510880

Predicting Resting-state Functional Connectivity With Efficient Structural Connectivity

doi: 10.1109/JAS.2017.7510880

China Scholarship Council 201306455001

the National Natural Science Foundation of China 61271407

the Fundamental Research Funds for the Central Universities 16CX06050A

More Information
  • The complex relationship between structural connectivity (SC) and functional connectivity (FC) of human brain networks is still a critical problem in neuroscience. In order to investigate the role of SC in shaping resting-state FC, numerous models have been proposed. Here, we use a simple dynamic model based on the susceptible-infected-susceptible (SIS) model along the shortest paths to predict FC from SC. Unlike the previous dynamic model based on SIS theory, we focus on the shortest paths as the principal routes to transmit signals rather than the empirical structural brain network. We first simplify the structurally connected network into an efficient propagation network according to the shortest paths and then combine SIS infection theory with the efficient network to simulate the dynamic process of human brain activity. Finally, we perform an extensive comparison study between the dynamic models embedded in the efficient network, the dynamic model embedded in the structurally connected network and dynamic mean field (DMF) model predicting FC from SC. Extensive experiments on two different resolution datasets indicate that ⅰ) the dynamic model simulated on the shortest paths can predict FC among both structurally connected and unconnected node pairs; ⅱ) though there are fewer links in the efficient propagation network, the predictive power of FC derived from the efficient propagation network is better than the dynamic model simulated on a structural brain network; ⅲ) in comparison with the DMF model, the dynamic model embedded in the shortest paths is found to perform better to predict FC.


  • loading
  • [1]
    G. Deco and V. K. Jirsa, "Ongoing cortical activity at rest: criticality, multistability, and ghost attractors, " J. Neurosci., vol. 32, no. 10, pp. 3366-3375, Mar. 2012. http://www.ncbi.nlm.nih.gov/pubmed/22399758
    G. Deco, A. Ponce-Alvarez, D. Mantini, G. L. Romani, P. Hagmann, and M. Corbetta, "Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations, " J. Neurosci., vol. 33, no. 27, pp. 11239-11252, Jul. 2013. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3718368/
    M. A. Koch, D. G. Norris, and M. Hund-Georgiadis, "An investigation of functional and anatomical connectivity using magnetic resonance imaging, " NeuroImage, vol. 16, no. 1, pp. 241-250, May 2002. http://www.sciencedirect.com/science/article/pii/S1053811901910523
    G. Deco, A. R. McIntosh, K. Shen, R. M. Hutchison, R. S. Menon, S. Everling, P. Hagmann, and V. K. Jirsa, "Identification of optimal structural connectivity using functional connectivity and neural modeling, " J. Neurosci., vol. 34, no. 23, pp. 7910-7916, Jun. 2014. http://www.ncbi.nlm.nih.gov/pubmed/24899713
    J. Cabral, M. L. Kringelbach, and G. Deco, "Exploring the network dynamics underlying brain activity during rest, " Progr. Neurobiol., vol. 114, pp. 102-131, Mar. 2014. http://www.ncbi.nlm.nih.gov/pubmed/24389385
    C. J. Honey, R. Kötter, M. Breakspear, and O. Sporns, "Network structure of cerebral cortex shapes functional connectivity on multiple time scales, " Proc. Natl. Acad. Sci. U. S. A., vol. 104, no. 24, pp. 10240-10245, Jun. 2007. http://www.ncbi.nlm.nih.gov/pubmed/17548818
    C. J. Honey, O. Sporns, L. Cammoun, X. Gigandet, J. P. Thiran, R. Meuli, and P. Hagmann, "Predicting human resting-state functional connectivity from structural connectivity, " Proc. Natl. Acad. Sci. U. S. A., vol. 106, no. 6, pp. 2035-2040, Feb. 2009. http://www.ncbi.nlm.nih.gov/pubmed/19188601
    A. Ghosh, Y. Rho, A. R. McIntosh, R. Kötter, and V. K. Jirsa, "Noise during rest enables the exploration of the brain's dynamic repertoire, " PLoS Comput. Biol., vol. 4, no. 10, pp. Article ID e1000196, Oct. 2008. http://www.ncbi.nlm.nih.gov/pubmed/18846206/
    E. Bullmore and O. Sporns, "complex brain networks: Graph theoretical analysis of structural and functional systems, " Nat. Rev. Neurosci., vol. 10, no. 3, pp. 186-198, Mar. 2009.
    G. Deco, V. Jirsa, A. R. McIntosh, O. Sporns, and R. Kötter, "Key role of coupling, delay, and noise in resting brain fluctuations, " Proc. Natl. Acad. Sci. U. S. A., vol. 106, no. 25, pp. 10302-10307, Jun. 2009. http://www.ncbi.nlm.nih.gov/pubmed/19497858
    G. Deco, V. K. Jirsa, and A. R. McIntosh, "Emerging concepts for the dynamical organization of resting-state activity in the brain, " Nat. Rev. Neurosci., vol. 12, pp. 43-56, Jan. 2011. http://www.ncbi.nlm.nih.gov/pubmed/21170073
    P. E. Vértes, A. F. Alexander-Bloch, N. Gogtay, J. N. Giedd, J. L. Rapoport, and E. T. Bullmore, "Simple models of human brain functional networks, " Proc. Natl. Acad. Sci. U. S. A., vol. 109, no. 15, pp. 5868-5873, Apr. 2012. http://www.ncbi.nlm.nih.gov/pubmed/22467830
    J. Goñi, M. P. van den Heuvel, A. Avena-Koenigsberger, N. V. de Mendizabal, R. F. Betzel, A. Griffa, P. Hagmann, B. Corominas-Murtra, J. P. Thiran, and O. Sporns, "Resting-brain functional connectivity predicted by analytic measures of network communication, " Proc. Natl. Acad. Sci. U. S. A., vol. 111, no. 2, pp. 833-838, Jan. 2014. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896172/
    C. J. Stam, E. C. W. van Straaten, E. Van Dellen, P. Tewarie, G. Gong, A. Hillebrand, J. Meier, and P. Van Mieghem, "The relation between structural and functional connectivity patterns in complex brain networks, " Int. J. Psychophysiol., vol. 103, pp. 149-160, May 2016. http://www.sciencedirect.com/science/article/pii/S0167876015000410
    M. Kaiser and C. C. Hilgetag, "Modelling the development of cortical systems networks, " Neurocomputing, vol. 58-60, pp. 297-302, Jun. 2004. http://www.sciencedirect.com/science/article/pii/S0925231204000554
    K. J. Friston, C. D. Frith, R. Turner, and R. S. J. Frackowiak, "Characterizing evoked hemodynamics with fMRI, " NeuroImage, vol. 2, no. 2, pp. 157-165, Jun. 1995. http://www.sciencedirect.com/science/article/pii/S105381198571018X
    R. M. Anderson and R. M. May, Infectious Diseases of Humans. Oxford, UK:Oxford University Press, 1992.
    C. Castellano and R. Pastor-Satorras, "Thresholds for epidemic spreading in networks, " Phys. Rev. Lett., vol. 105, no. 21, pp. Article ID 218701, Nov. 2010. http://www.ncbi.nlm.nih.gov/pubmed/21231361
    M. Boguñá, C. Castellano, and R. Pastor-Satorras, "Nature of the epidemic threshold for the susceptible-infected-susceptible dynamics in networks, " Phys. Rev. Lett., vol. 111, no. 6, pp. Article ID 068701, Aug. 2013. http://www.ncbi.nlm.nih.gov/pubmed/23971619
    J. Joo and J. L. Lebowitz, "Behavior of susceptible-infected-susceptible epidemics on heterogeneous networks with saturation, " Phys. Rev. E, vol. 69, no. 6, pp. Article ID 066105, Jun. 2004. http://www.ncbi.nlm.nih.gov/pubmed/15244665
    H. J. Wang, Q. Li, G. D'Agostino, S. Havlin, H. E. Stanley, and P. Van Mieghem, "Effect of the interconnected network structure on the epidemic threshold, " Phys. Rev. E, vol. 88, no. 2, pp. 022801, Aug. 2013. http://www.ncbi.nlm.nih.gov/pubmed/24032878
    Y. L. Lu and G. P. Jiang, "Backward bifurcation and local dynamics of epidemic model on adaptive networks with treatment, " Neurocomputing, vol. 145, pp. 113-121, Dec. 2014. http://www.sciencedirect.com/science/article/pii/S0925231214007176
    V. Latora and M. Marchiori, "Efficient behavior of small-world networks, " Phys. Rev. Lett., vol. 87, no. 19, pp. Article ID 198701, Oct. 2001. http://www.ncbi.nlm.nih.gov/pubmed/11690461
    S. Hougardy, "The Floyd-Warshall algorithm on graphs with negative cycles, " Inform. Process. Lett., vol. 110, no. 8-9, pp. 279-281, Apr. 2010. http://www.sciencedirect.com/science/article/pii/S002001901000027X
    A. Trusina, M. Rosvall, and K. Sneppen, "Communication boundaries in networks, " Phys. Rev. Lett., vol. 94, no. 23, pp. Article ID 238701, Jun. 2005. http://www.ncbi.nlm.nih.gov/pubmed/16090509
    M. Rosvall, A. Grönlund, P. Minnhagen, and K. Sneppen, "Searchability of networks, " Phys. Rev. E, vol. 72, no. 4, pp. Article ID 046117, Oct. 2005. http://www.ncbi.nlm.nih.gov/pubmed/16383478
    J. Goñi, A. Avena-Koenigsberger, N. V. de Mendizabal, M. P. van den Heuvel, R. F. Betzel, and O. Sporns, "Exploring the morphospace of communication efficiency in complex networks, " PLoS One, vol. 8, no. 3, pp. Article ID e58070, Mar. 2013. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3591454/
    F. Abdelnour, H. U. Voss, and A. Raj, "Network diffusion accurately models the relationship between structural and functional brain connectivity networks, " NeuroImage, vol. 90, pp. 335-347, Apr. 2014. http://www.sciencedirect.com/science/article/pii/S1053811913012597
    N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, F. Crivello, O. Etard, N. Delcroix, B. Mazoyer, and M. Joliot, "Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain, " NeuroImage, vol. 15, no. 1, pp. 273-289, Jan. 2002. http://www.ncbi.nlm.nih.gov/pubmed/11771995?access_num=11771995&link_type=MED&dopt=Abstract
    P. A. Bandettini, A. Jesmanowicz, E. C. Wong, and J. S. Hyde, "Processing strategies for time-course data sets in functional MRI of the human brain, " Magn. Reson. Med., vol. 30, no. 2, pp. 161-173, Aug. 1993. doi: 10.1002/mrm.1910300204
    B. Biswal, F. Zerrin Yetkin, V. M. Haughton, and J. S. Hyde, "Functional connectivity in the motor cortex of resting human brain using echo-planar MRI, " Magn. Reson. Med., vol. 34, no. 4, pp. 537-541, Oct. 1995. https://www.ncbi.nlm.nih.gov/pubmed/8524021
    A. Ghosh, Y. Rho, A. R. McIntosh, R. Kötter, and V. K. Jirsa, "Cortical network dynamics with time delays reveals functional connectivity in the resting brain, " Cogn. Neurodyn., vol. 2, no. 2, pp. 115-120, Jun. 2008. doi: 10.1007/s11571-008-9044-2
    J. Cabral, E. Hugues, O. Sporns, and G. Deco, "Role of local network oscillations in resting-state functional connectivity, " NeuroImage, vol. 57, no. 1, pp. 130-139, Jul. 2011. http://www.sciencedirect.com/science/article/pii/S1053811911003880
    J. Cabral, E. Hugues, M. L. Kringelbach, and G. Deco, "Modeling the outcome of structural disconnection on resting-state functional connectivity, " NeuroImage, vol. 62, no. 3, pp. 1342-1353, Sep. 2012. http://www.sciencedirect.com/science/article/pii/S1053811912005848
    J. S. Damoiseaux and M. D. Greicius, "Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity, " Brain Struct. Funct., vol. 213, no. 6, pp. 525-533, Oct. 2009. http://www.ncbi.nlm.nih.gov/pubmed/19565262
    A. Messé, D. Rudrauf, H. Benali, and G. Marrelec, "Relating structure and function in the human brain: Relative contributions of anatomy, stationary dynamics, and non-stationarities, " PLoS Comput. Biol., vol. 10, no. 3, pp. Article ID e1003530, Mar. 2014. http://www.ncbi.nlm.nih.gov/pubmed/24651524
    S. L. Bressler and E. Tognoli, "Operational principles of neurocognitive networks, " Int. J. Psychophysiol., vol. 60, no. 2, pp. 139-148, May 2006. http://www.sciencedirect.com/science/article/pii/S0167876006000092
    V. Pernice, B. Staude, S. Cardanobile, and S. Rotter, "How structure determines correlations in neuronal networks, " PLoS Comput. Biol., vol. 7, no. 5, pp. e1002059, May 2011. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3098224/
    G. Deco, M. Senden, and V. Jirsa, "How anatomy shapes dynamics: A semi-analytical study of the brain at rest by a simple spin model, " Front. Comput. Neurosci., vol. 6, pp. Article ID 68, Sep. 2012. http://www.ncbi.nlm.nih.gov/pubmed/23024632
    J. L. Vincent, G. H. Patel, M. D. Fox, A. Z. Snyder, J. T. Baker, D. C. Van Essen, J. M. Zempel, L. H. Snyder, M. Corbetta, and M. E. Raichle, "Intrinsic functional architecture in the anaesthetized monkey brain, " Nature, vol. 447, no. 7140, pp. 83-86, May 2007. http://www.ncbi.nlm.nih.gov/pubmed/17476267
    D. S. Margulies, J. L. Vincent, C. Kelly, G. Lohmann, L. Q. Uddin, B. B. Biswal, A. Villringer, F. X. Castellanos, M. P. Milham, and M. Petrides, "Precuneus shares intrinsic functional architecture in humans and monkeys, " Proc. Natl. Acad. Sci. U. S. A., vol. 106, no. 47, pp. 20069-20074, Nov. 2009. http://www.ncbi.nlm.nih.gov/pubmed/19903877
    M. P. van den Heuvel, R. C. W. Mandl, R. S. Kahn, and H. E. Hulshoff Pol, "Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain, " Hum. Brain Mapp., vol. 30, no. 10, pp. 3127-3141, Oct. 2009. http://www.ncbi.nlm.nih.gov/pubmed/19235882
    C. J. Honey, J. P. Thivierge, and O. Sporns, "Can structure predict function in the human brain?, " NeuroImage, vol. 52, no. 3, pp. 766-776, Sep. 2010. http://www.ncbi.nlm.nih.gov/pubmed/20116438
    C. Thomas, F. Q. Ye, M. O. Irfanoglu, P. Modi, K. S. Saleem, D. A. Leopold, and C. Pierpaoli, "Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited, " Proc. Natl. Acad. Sci. U. S. A., vol. 111, no. 46, pp. 16574-16579, Nov. 2014. http://www.ncbi.nlm.nih.gov/pubmed/25368179
    E. I. Barakova, A. Spink, and N. Fujii, "From neuron to behavior: evidence from behavioral measurements, " Neurocomputing, vol. 84, pp. 1-2, May 2012. http://www.sciencedirect.com/science/article/pii/S0925231211007417?np=y
    B. S. Bhattacharya, Y. Cakir, N. Serap-Sengor, L. Maguire, and D. Coyle, "Model-based bifurcation and power spectral analyses of thalamocortical alpha rhythm slowing in Alzheimer's disease, " Neurocomputing, vol. 115, pp. 11-22, Sep. 2013. http://www.sciencedirect.com/science/article/pii/S0925231212008600
    S. A. R. B. Rombouts, F. Barkhof, R. Goekoop, C. J. Stam, and P. Scheltens, "Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease: an fMRI study, " Hum. Brain Mapp., vol. 26, no. 4, pp. 231-239, Dec. 2005. https://www.ncbi.nlm.nih.gov/pubmed/15954139
    S. A. R. B. Rombouts, J. S. Damoiseaux, R. Goekoop, F. Barkhof, P. Scheltens, S. M. Smith, and C. F. Beckmann, "Model-free group analysis shows altered BOLD FMRI networks in dementia, " Hum. Brain Mapp., vol. 30, no. 1, pp. 256-266, Jan. 2009. http://www.ncbi.nlm.nih.gov/pubmed/18041738
    M. M. Schoonheim, J. J. G. Geurts, D. Landi, L. Douw, M. L. van der Meer, H. Vrenken, C. H. Polman, F. Barkhof, and C. J. Stam, "Functional connectivity changes in multiple sclerosis patients: a graph analytical study of MEG resting state data, " Hum. Brain Mapp., vol. 34, no. 1, pp. 52-61, Jan. 2013. http://www.ncbi.nlm.nih.gov/pubmed/21954106


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(6)

    Article Metrics

    Article views (1159) PDF downloads(24) Cited by()


    DownLoad:  Full-Size Img  PowerPoint