A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 5 Issue 3
May  2018

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 6.171, Top 11% (SCI Q1)
    CiteScore: 11.2, Top 5% (Q1)
    Google Scholar h5-index: 51, TOP 8
Turn off MathJax
Article Contents
Zhao Ren, Kun Qian, Zixing Zhang, Vedhas Pandit, Alice Baird and Björn Schuller, "Deep Scalogram Representations for Acoustic Scene Classification," IEEE/CAA J. Autom. Sinica, vol. 5, no. 3, pp. 662-669, Mar. 2018. doi: 10.1109/JAS.2018.7511066
Citation: Zhao Ren, Kun Qian, Zixing Zhang, Vedhas Pandit, Alice Baird and Björn Schuller, "Deep Scalogram Representations for Acoustic Scene Classification," IEEE/CAA J. Autom. Sinica, vol. 5, no. 3, pp. 662-669, Mar. 2018. doi: 10.1109/JAS.2018.7511066

Deep Scalogram Representations for Acoustic Scene Classification

doi: 10.1109/JAS.2018.7511066
Funds:

the German National BMBF IKT2020-Grant 16 SV7213

the German National BMBF IKT2020-Grant EmotAsS

the European-Unions Horizon 2020 Research and Innovation Programme 688835

the European-Unions Horizon 2020 Research and Innovation Programme DE-ENIGMA

the China Scholarship Council CSC

More Information
  • Spectrogram representations of acoustic scenes have achieved competitive performance for acoustic scene classification. Yet, the spectrogram alone does not take into account a substantial amount of time-frequency information. In this study, we present an approach for exploring the benefits of deep scalogram representations, extracted in segments from an audio stream. The approach presented firstly transforms the segmented acoustic scenes into bump and morse scalograms, as well as spectrograms; secondly, the spectrograms or scalograms are sent into pre-trained convolutional neural networks; thirdly, the features extracted from a subsequent fully connected layer are fed into (bidirectional) gated recurrent neural networks, which are followed by a single highway layer and a softmax layer; finally, predictions from these three systems are fused by a margin sampling value strategy. We then evaluate the proposed approach using the acoustic scene classification data set of 2017 IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events (DCASE). On the evaluation set, an accuracy of 64.0% from bidirectional gated recurrent neural networks is obtained when fusing the spectrogram and the bump scalogram, which is an improvement on the 61.0% baseline result provided by the DCASE 2017 organisers. This result shows that extracted bump scalograms are capable of improving the classification accuracy, when fusing with a spectrogram-based system.

     

  • loading
  • [1]
    E. Marchi, D. Tonelli, X. Z. Xu, F. Ringeval, J. Deng, S. Squartini, and B. Schuller, "Pairwise decomposition with deep neural networks and multiscale kernel subspace learning for acoustic scene classification, " in Proc. Detection and Classification of Acoustic Scenes and Events, Budapest, Hungary, 2016, pp. 65-69.
    [2]
    W. He, Z. J. Li, and C. L. P. Chen, "A survey of human-centered intelligent robots: Issues and challenges, " IEEE/CAA J. of Autom. Sinica, vol. 4, no. 4, pp. 602-609, Oct. 2017. http://www.ieee-jas.org/CN/abstract/abstract280.shtml
    [3]
    F. Eyben, F. Weninger, F. Groß, and B. Schuller, "Recent developments in openSMILE, the Munich open-source multimedia feature extractor, " in Proc. 21st ACM Int. Conf. Multimedia, Barcelona, Spain, 2013, pp. 835-838. https://dl.acm.org/citation.cfm?doid=2502081.2502224
    [4]
    L. Li, Y. L. Lin, N. N. Zheng, and F. Y. Wang, "Parallel learning: A perspective and a framework, " IEEE/CAA J. of Autom. Sinica, vol. 4, no. 3, pp. 389-395, Jul. 2017. doi: 10.1109/JAS.2017.7510493
    [5]
    F. Y. Wang, N. N. Zheng, D. P. Cao, C. M. Martinez, L. Li, and T. Liu, "Parallel driving in CPSS: A unified approach for transport automation and vehicle intelligence, " IEEE/CAA J. of Autom. Sinica, vol. 4, no. 4, pp. 577-587, Oct. 2017. doi: 10.1109/JAS.2017.7510598
    [6]
    S. Amiriparian, M. Gerczuk, S. Ottl, N. Cummins, M. Freitag, S. Pugachevskiy, A. Baird, and B. Schuller, "Snore sound classification using image-based deep spectrum features, " in Proc. INTERSPEECH 2017: Conf. Int. Speech Communication Association, Stockholm, Sweden, 2017, pp. 3512-3516. https://dl.acm.org/citation.cfm?doid=2502081.2502224
    [7]
    M. Valenti, A. Diment, G. Parascandolo, S. Squartini, and T. Virtanen, "DCASE 2016 acoustic scene classification using convolutional neural networks, " in Proc. Detection and Classification of Acoustic Scenes and Events 2016, Budapest, Hungary, 2016, pp. 95-99.
    [8]
    I. Daubechies, "The wavelet transform, time-frequency localization and signal analysis, " IEEE Trans. Inf. Theory, vol. 36, no. 5, pp. 961-1005, Sep. 1990. http://ieeexplore.ieee.org/document/57199/
    [9]
    V. N. Varghees and K. I. Ramachandran, "Effective heart sound segmentation and murmur classification using empirical wavelet transform and instantaneous phase for electronic stethoscope, " IEEE Sens. J., vol. 17, no. 12, pp. 3861-3872, Jun. 2017. http://ieeexplore.ieee.org/document/7903626
    [10]
    K. Qian, C. Janott, Z. X. Zhang, C. Heiser, and B. Schuller, "Wavelet features for classification of vote snore sounds, " in Proc. 2016 IEEE Int. Conf. Acoustics, Speech and Signal Processing, Shanghai, China, 2016, pp. 221-225.
    [11]
    K. Qian, C. Janott, J. Deng, C. Heiser, W. Hohenhorst, M. Herzog, N. Cummins, and B. Schuller, "Snore sound recognition: on wavelets and classifiers from deep nets to kernels, " in Proc. 39th Ann. Int. Conf. of the IEEE Engineering in Medicine and Biology Society, Seogwipo, South Korea, 2017, pp. 3737-3740.
    [12]
    K. Qian, C. Janott, V. Pandit, Z. X. Zhang, C. Heiser, W. Hohenhorst, M. Herzog, W. Hemmert, and B. Schuller, "Classification of the excitation location of snore sounds in the upper airway by acoustic multifeature analysis, " IEEE Trans. Biomed. Eng., vol. 64, no. 8, pp. 1731-1741, Aug. 2017. http://ieeexplore.ieee.org/document/7605472/
    [13]
    K. Qian, Z. Ren, V. Pandit, Z. J. Yang, Z. X. Zhang, and B. Schuller, "Wavelets revisited for the classification of acoustic scenes, " in Proc. Detection and Classification of Acoustic Scenes and Events 2017, Munich, Germany, 2017, pp. 108-112.
    [14]
    O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. H. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, "ImageNet large scale visual recognition challenge, " Int. J. Comput. Vis., vol. 115, no. 3, pp. 211-252, Dec. 2015.
    [15]
    J. Schlüter and S. Böck, "Improved musical onset detection with convolutional neural networks, " in Proc. 2014 IEEE Int. Conf. Acoustics, Speech and Signal Processing, Florence, Italy, 2014, pp. 6979-6983. http://ieeexplore.ieee.org/document/6854953/
    [16]
    G. Gwardys and D. Grzywczak, "Deep image features in music information retrieval, " Int. J. Electron. Telecomm., vol. 60, no. 4, pp. 321-326, Dec. 2014. https://www.deepdyve.com/lp/de-gruyter/deep-image-features-in-music-information-retrieval-k0MzODXMRz
    [17]
    J. Deng, N. Cummins, J. Han, X. Z. Xu, Z. Ren, V. Pandit, Z. X. Zhang, and B. Schuller, "The University of Passau open emotion recognition system for the multimodal emotion challenge, " in Proc. 7th Chinese Conf. Pattern Recognition (CCPR), Chengdu, China, 2016, pp. 652-666. doi: 10.1007/978-981-10-3005-5_54
    [18]
    A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks, " in Proc. 25th Int. Conf. Neural Information Processing Systems, Lake Tahoe, Nevada, USA, 2012, pp. 1097-1105. https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
    [19]
    K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition, " in Proc. Int. Conf. Learning Representations, San Diego, CA, USA, 2015.
    [20]
    S. J. Pan and Q. Yang, "A survey on transfer learning, " IEEE Trans. Knowl. Data Eng. , vol. 22, no. 10, pp. 1345-1359, Oct. 2010.
    [21]
    W. Y. Zhang, H. G. Zhang, J. H. Liu, K. Li, D. S. Yang, and H. Tian, "Weather prediction with multiclass support vector machines in the fault detection of photovoltaic system, " IEEE/CAA J. of Autom. Sinica, vol. 4, no. 3, pp. 520-525, Jul. 2017. http://www.ieee-jas.org/EN/abstract/abstract270.shtml
    [22]
    S. Young, G. Evermann, D. Kershaw, J. Odell, D. Ollason, D. Povey, V. Valtchev, and P. Woodland, The HTK Book. Cambridge, UK:Cambridge University Engineering Department, 2002.
    [23]
    D. P. Mandic and J. A. Chambers, Recurrent Neural Networks for Prediction:Learning Algorithms, Architectures and Stability. New York, USA:Wiley Online Library, 2002.
    [24]
    S. Hochreiter and J. Schmidhuber, "Long short-term memory, " Neural Comput. , vol. 9, no. 8, pp. 1735-1780, Nov. 1997.
    [25]
    S. H. Bae, I. Choi, and N. S. Kim, "Acoustic scene classification using parallel combination of LSTM and CNN, " in Proc. Detection and Classification of Acoustic Scenes and Events 2016, Budapest, Hungary, 2016, pp. 11-15.
    [26]
    D. Yu and J. Y. Li, "Recent progresses in deep learning based acoustic models, " IEEE/CAA J. of Autom. Sinica, vol. 4, no. 3, pp. 396-409, Jul. 2017. http://www.ieee-jas.org/EN/abstract/abstract260.shtml
    [27]
    J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, "Empirical evaluation of gated recurrent neural networks on sequence modeling, " in Proc. NIPS 2014 Deep Learning and Representation Learning Workshop, Montreal, Canada, 2014.
    [28]
    Z. Ren, V. Pandit, K. Qian, Z. J. Yang, Z. X. Zhang, and B. Schuller, "Deep sequential image features for acoustic scene classification, " in Proc. Detection and Classification of Acoustic Scenes and Events, Munich, Germany, 2017, pp. 113-117.
    [29]
    A. Mesaros, T. Heittola, A. Diment, B. Elizalde, A. Shah, E. Vincent, B. Raj, and T. Virtanen, "DCASE 2017 challenge setup: tasks, datasets and baseline system, " in Proc. Workshop on Detection and Classification of Acoustic Scenes and Events, Munich, Germany, 2017, pp. 85-92.
    [30]
    S. Hershey, S. Chaudhuri, D. P. W. Ellis, J. F. Gemmeke, A. Jansen, R. C. Moore, M. Plakal, D. Platt, R. A. Saurous, B. Seybold, M. Slaney, R. J. Weiss, and K. Wilson, "CNN architectures for large-scale audio classification, " in Proc. 2017 IEEE Int. Conf. Acoustics, Speech and Signal Processing, New Orleans, LA, USA, 2017, pp. 131-135.
    [31]
    S. Amiriparian, M. Freitag, N. Cummins, and B. Schuller, "Sequence to sequence autoencoders for unsupervised representation learning from audio, " in Proc. Detection and Classification of Acoustic Scenes and Events 2017, Munich, Germany, 2017, pp. 17-21.
    [32]
    E. Fonseca, R. Gong, D. Bogdanov, O. Slizovskaia, E. Gomez, and X. Serra, "Acoustic scene classification by ensembling gradient boosting machine and convolutional neural networks, " in Proc. Detection and Classification of Acoustic Scenes and Events 2017, Munich, Germany, 2017, pp. 37-41.
    [33]
    A. Vafeiadis, D. Kalatzis, K. Votis, D. Giakoumis, D. Tzovaras, L. M. Chen, and R. Hamzaoui, "Acoustic scene classification: From a hybrid classifier to deep learning, " in Proc. Detection and Classification of Acoustic Scenes and Events 2017, Munich, Germany, 2017, pp. 123-127.
    [34]
    S. Park, S. Mun, Y. Lee, and H. Ko, "Acoustic scene classification based on convolutional neural network using double image features, " in Proc. Detection and Classification of Acoustic Scenes and Events 2017, Munich, Germany, 2017, pp. 98-102.
    [35]
    R. N. Khushaba, S. Kodagoda, S. Lal, and G. Dissanayake, "Driver drowsiness classification using fuzzy wavelet-packet-based feature-extraction algorithm, " IEEE Trans. Biomed. Eng., vol. 58, no. 1, pp. 121-131, Jan. 2011. http://ieeexplore.ieee.org/document/5580017/
    [36]
    T. H. Vu and J. C. Wang, "Acoustic scene and event recognition using recurrent neural networks, " in Proc. Detection and Classification of Acoustic Scenes and Events 2016, Budapest, Hungary, 2016.
    [37]
    M. Zöhrer and F. Pernkopf, "Gated recurrent networks applied to acoustic scene classification and acoustic event detection, " in Proc. Detection and Classification of Acoustic Scenes and Events 2016, Budapest, Hungary, 2016, pp. 115-119.
    [38]
    E. Sejdić, I. Djurović, and J. Jiang, "Time-frequency feature representation using energy concentration: an overview of recent advances, " Digit. Signal Process., vol. 19, no. 1, pp. 153-183, Jan. 2009. https://www.sciencedirect.com/science/article/pii/S105120040800002X
    [39]
    I. Daubechies, Ten Lectures on Wavelets. Philadelphia, Pa, USA:SIAM, 1992.
    [40]
    S. C. Olhede and A. T. Walden, "Generalized morse wavelets, " IEEE Trans. Signal Process., vol. 50, no. 11, pp. 2661-2670, Nov. 2002.
    [41]
    A. Vedaldi and K. Lenc, "MatConvNet: Convolutional neural networks for MATLAB, " in Proc. 23rd ACM Int. Conf. Multimedia, Brisbane, Australia, 2015, pp. 689-692.
    [42]
    R. Jozefowicz, W. Zaremba, and I. Sutskever, "An empirical exploration of recurrent network architectures, " in Proc. 32nd Int. Conf. Machine Learning, Lille, France, 2015, pp. 2342-2350.
    [43]
    D. Bahdanau, K. Cho, and Y. Bengio, "Neural machine translation by jointly learning to align and translate, " in Proc. Int. Conf. Learning Representations 2015, San Diego, CA, USA, 2015.
    [44]
    Z. C. Yang, D. Y. Yang, C. Dyer, X. D. He, A. J. Smola, and E. H. Hovy, "Hierarchical attention networks for document classification, " in Proc. NAACL+HLT 2016, San Diego, CA, USA, 2016, pp. 1480-1489.
    [45]
    M. Schuster and K. K. Paliwal, "Bidirectional recurrent neural networks, " IEEE Trans. Signal Process., vol. 45, no. 11, pp. 2673-2681, Nov. 1997. http://ieeexplore.ieee.org/document/650093/
    [46]
    R. K. Srivastava, K. Greff, and J. Schmidhuber, "Highway networks, " arXiv preprint, arXiv: 1505. 00387, 2015.
    [47]
    T. Scheffer, C. Decomain, and S. Wrobel, "Active hidden Markov models for information extraction, " in Proc. 4th Int. Conf. Advances in Intelligent Data Analysis, Porto, Portugal, 2001, pp. 309-318. doi: 10.1007/3-540-44816-0_31
    [48]
    K. Qian, Z. X. Zhang, A. Baird, and B. Schuller, "Active learning for bird sound classification via a kernel-based extreme learning machine, " J. Acoust. Soc. Am., vol. 142, no. 4, pp. 1796, Oct. 2017.
    [49]
    A. Mesaros, T. Heittola, and T. Virtanen, "TUT database for acoustic scene classification and sound event detection, " in Proc. 24th European Signal Processing Conf. , Budapest, Hungary, 2016, pp. 1128-1132. http://ieeexplore.ieee.org/document/7760424/
    [50]
    B. Schuller, S. Steidl, A. Batliner, A. Vinciarelli, K. Scherer, F. Ringeval, M. Chetouani, F. Weninger, F. Eyben, E. Marchi, M. Mortillaro, H. Salamin, A. Polychroniou, F. Valente, and S. Kim, "The INTERSPEECH 2013 computational paralinguistics challenge: social signals, conflict, emotion, autism, " in Proc. 14th Ann. Conf. Int. Speech Communication Association, Lyon, France, 2013, pp. 148-152.
    [51]
    S. Mun, S. Park, D. K. Han, and H. Ko, "Generative adversarial network based acoustic scene training set augmentation and selection using SVM hyper-plane, " in Proc. Detection and Classification of Acoustic Scenes and Events 2017, Munich, Germany, 2017, pp. 93-97.
    [52]
    I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, "Generative adversarial nets, " in Proc. 27th Int. Conf. Neural Information Processing Systems, Montreal, Canada, 2014, pp. 2672-2680.
    [53]
    K. F. Wang, C. Gou, Y. J. Duan, Y. L. Lin, X. H. Zheng, and F. Y. Wang, "Generative adversarial networks: introduction and outlook, " IEEE/CAA J. of Autom. Sinica, vol. 4, no. 4, pp. 588-598, Oct. 2017. http://www.ieee-jas.org/CN/abstract/abstract278.shtml

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views (1202) PDF downloads(182) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return