A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 5 Issue 4
Jul.  2018

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 6.171, Top 11% (SCI Q1)
    CiteScore: 11.2, Top 5% (Q1)
    Google Scholar h5-index: 51, TOP 8
Turn off MathJax
Article Contents
Zhenxing Zhang, Hongyi Li, Chengwei Wu and Qi Zhou, "Finite Frequency Fuzzy H∞ Control for Uncertain Active Suspension Systems With Sensor Failure," IEEE/CAA J. Autom. Sinica, vol. 5, no. 4, pp. 777-786, July 2018. doi: 10.1109/JAS.2018.7511132
Citation: Zhenxing Zhang, Hongyi Li, Chengwei Wu and Qi Zhou, "Finite Frequency Fuzzy H Control for Uncertain Active Suspension Systems With Sensor Failure," IEEE/CAA J. Autom. Sinica, vol. 5, no. 4, pp. 777-786, July 2018. doi: 10.1109/JAS.2018.7511132

Finite Frequency Fuzzy H Control for Uncertain Active Suspension Systems With Sensor Failure

doi: 10.1109/JAS.2018.7511132
Funds:

the National Natural Science Foundation of China 61622302

the National Natural Science Foundation of China 61673072

the National Natural Science Foundation of China 61573070

Guangdong Natural Science Funds for Distinguished Young Scholar 2017A030306014

the Department of Education of Guangdong Province 2016KTSCX030

the Department of Education of Liaoning Province LZ2017001

More Information
  • This paper investigates the problem of finite frequency fuzzy H control for uncertain active vehicle suspension systems, in which sensor failure is taken into account. TakagiSugeno (T-S) fuzzy model is established for considered suspension systems. In order to describe the sensor fault effectively, a corresponding model is introduced. A vital performance index, H performance, is utilized to measure the drive comfort. In the framework of Kalman-Yakubovich-Popov theory, the H norm from external perturbation to controlled output is optimized effectively in the frequency domain of 4 Hz-8 Hz to enhance ride comfort level. Meanwhile, three suspension constrained requirements, i.e., ride comfort level, manipulation stability, suspension deflection are also guaranteed. Furthermore, sufficient conditions are developed to design a fuzzy controller to guarantee the desired performance of active suspension systems. Finally, the proposed control scheme is applied to a quarter-vehicle active suspension, and simulation results are given to illustrate the effectiveness of the proposed approach.

     

  • loading
  • [1]
    D. Karnopp, "Active damping in road vehicle suspension systems, " Veh. Syst. Dyn., vol. 12, no. 6, pp. 291-311, Dec. 1983. https://www.researchgate.net/publication/245178596_Active_Damping_in_Road_Vehicle_Suspension_Systems
    [2]
    R. S. Sharp and D. A. Crolla, "Road vehicle suspension system design-a review, " Veh. Syst. Dyn., vol. 16, no. 3, pp. 167-192, Jan. 1987. http://www.researchgate.net/publication/233265612_Road_Vehicle_Suspension_System_Design_-_a_review
    [3]
    O. Demir, I. Keskin, and S. Cetin, "Modeling and control of a nonlinear half-vehicle suspension system: a hybrid fuzzy logic approach, " Nonlinear Dyn., vol. 67, no. 3, pp. 2139-2151, Feb. 2012. doi: 10.1007/s11071-011-0135-y
    [4]
    T. Yoshimura, A. Kume, M. Kurimoto, and J. Hino, "Construction of an active suspension system of a quarter car model using the concept of sliding mode control, " J. Sound Vib., vol. 239, no. 2, pp. 187-199, Jan. 2001. http://www.sciencedirect.com/science/article/pii/S0022460X00931171
    [5]
    H. Zhang, X. Y. Zheng, H. C. Yan, C. Peng, Z. P. Wang, and Q. J. Chen, "Codesign of event-triggered and distributed H filtering for active semi-vehicle suspension systems, " IEEE/ASME Trans. Mechatron., vol. 22, no. 2, pp. 1047-1058, Apr. 2017. https://www.researchgate.net/publication/311989946_Co-design_of_event-triggered_and_distributed_H_filtering_for_active_semi-vehicle_suspension_systems?ev=auth_pub
    [6]
    Y. Shi, H. Fang, and M. Yan, "Kalman filter-based adaptive control for networked systems with unknown parameters and randomly missing outputs, " Int. J. Robust Nonlinear Control, vol. 19, no. 18, pp. 1976-1992, Dec. 2009. doi: 10.1002/rnc.1390/full
    [7]
    Q. Zhou, H. Y. Li, C. W. Wu, L. J. Wang, and C. K. Ahn, "Adaptive fuzzy control of nonlinear systems with unmodeled dynamics and input saturation using small-gain approach, " IEEE Trans. Syst. Man Cybern. Syst., vol. 47, no. 8, pp. 1979-1989, Aug. 2017. doi: 10.1109/tsmc.2016.2586108
    [8]
    H. Y. Li, L. Bai, Q. Zhou, R. Q. Lu, and L. J. Wang, "Adaptive fuzzy control of stochastic nonstrict-feedback nonlinear systems with input saturation, " IEEE Trans. Syst. Man Cybern. Syst., vol. 47, no. 8, pp. 2185-2197, Aug. 2017. http://ieeexplore.ieee.org/document/7803592
    [9]
    D. Lin and X. Y. Wang, "Self-organizing adaptive fuzzy neural control for the synchronization of uncertain chaotic systems with random-varying parameters, " Neurocomputing, vol. 74, no. 12-13, pp. 2241-2249, Jun. 2011. http://www.sciencedirect.com/science/article/pii/S092523121100141X
    [10]
    N. Al-Holou, T. Lahdhiri, D. S. Joo, J. Weaver, and F. Al-Abbas, "Sliding mode neural network inference fuzzy logic control for active suspension systems, " IEEE Trans. Fuzzy Syst., vol. 10, no. 2, pp. 234-246, Apr. 2002. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=995124
    [11]
    H. R. Karimi and H. J. Gao, "New delay-dependent exponential H synchronization for uncertain neural networks with mixed time delays, " IEEE Trans. Syst., Man, Cybern., B (Cybern. ), vol. 40, no. 1, pp. 173-185, Feb. 2010. http://dl.acm.org/citation.cfm?id=1734945
    [12]
    H. R. Karimi, "A sliding mode approach to H synchronization of master-slave time-delay systems with Markovian jumping parameters and nonlinear uncertainties, " J. Franklin Inst., vol. 349, no. 4, pp. 1480-1496, May 2012. http://www.ams.org/mathscinet-getitem?mr=2909498
    [13]
    M. V. Basin, P. Yu, and Y. B. Shtessel, "Hypersonic missile adaptive sliding mode control using finite-and fixed-time observers, " IEEE Trans. Ind. Electron., vol. 65, no. 1, pp. 930-941, Jan. 2018. http://ieeexplore.ieee.org/document/7920402/
    [14]
    H. J. Gao, W. C. Sun, and P. Shi, "Robust sampled-data H control for vehicle active suspension systems, " IEEE Trans. Control Syst. Technol., vol. 18, no. 1, pp. 238-245, Jan. 2010. http://hdl.handle.net/2440/82508
    [15]
    H. Y. Li, X. J. Jing, and H. R. Karimi, "Output-feedback-based H control for vehicle suspension systems with control delay, " IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 436-446, Jan. 2014. http://ieeexplore.ieee.org/document/6419815/
    [16]
    R. J. Lian, "Enhanced adaptive self-organizing fuzzy sliding-mode controller for active suspension systems, " IEEE Trans. Ind. Electron., vol. 60, no. 3, pp. 958-968, Mar. 2013. http://ieeexplore.ieee.org/document/6166409/
    [17]
    W. C. Sun, Z. L. Zhao, and H. J. Gao, "Saturated adaptive robust control for active suspension systems, " IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3889-3896, Sep. 2013. http://ieeexplore.ieee.org/document/6226864/
    [18]
    W. C. Sun, H. J. Gao, and O. Kaynak, "Adaptive backstepping control for active suspension systems with hard constraints, " IEEE/ASME Trans. Mechatron., vol. 18, no. 3, pp. 1072-1079, Jun. 2013. http://ieeexplore.ieee.org/document/6236191
    [19]
    F. Zhao, S. S. Ge, F. W. Tu, Y. C. Qin, and M. M. Dong, "Adaptive neural network control for active suspension system with actuator saturation, " IET Control Theory Appl., vol. 10, no. 14, pp. 1696-1705, Jun. 2016. http://ieeexplore.ieee.org/document/7564514/
    [20]
    H. H. Pan, W. C. Sun, H. J. Gao, T. Hayat, and F. Alsaadi, "Nonlinear tracking control based on extended state observer for vehicle active suspensions with performance constraints, " Mechatronics, vol. 30, pp. 363-370, Sep. 2015. http://www.sciencedirect.com/science/article/pii/S0957415814001111
    [21]
    H. Y. Li, C. W. Wu, L. G. Wu, H. K. Lam, and Y. B. Gao, "Filtering of interval type-2 fuzzy systems with intermittent measurements, " IEEE Trans. Cybern., vol. 46, no. 3, pp. 668-678, Mar. 2016. http://ieeexplore.ieee.org/document/7078930/
    [22]
    X. P. Xie, D. Yue, H. G. Zhang, and Y. S. Xue, "Fault estimation observer design for discrete-time Takagi-Sugeno fuzzy systems based on homogenous polynomially parameter-dependent lyapunov functions, " IEEE Trans. Cybern., vol. 47, no. 9, pp. 2504-2513, Sep. 2017. http://www.ncbi.nlm.nih.gov/pubmed/28436917
    [23]
    Z. X. Zhang, Q. Zhou, C. W. Wu, and H. Y. Li, "Dissipativity-based reliable interval type-2 fuzzy filter design for uncertain nonlinear systems, " Int. J. Fuzzy Syst., vol. 20, no. 2, pp. 390-402, Feb. 2018. doi: 10.1007/s40815-017-0413-z
    [24]
    H. Y. Li, C. W. Wu, S. Yin, and H. K. Lam, "Observer-based fuzzy control for nonlinear networked systems under unmeasurable premise variables, " IEEE Trans. Fuzzy Syst., vol. 24, no. 5, pp. 1233-1245, Oct. 2016. http://ieeexplore.ieee.org/document/7346459/
    [25]
    C. W. Wu, J. X. Liu, X. J. Jing, H. Y. Li, and L. G. Wu, "Adaptive fuzzy control for nonlinear networked control systems, " IEEE Trans. Syst. Man Cybern. Syst., vol. 47, no. 8, pp. 2420-2430, Aug. 2017. http://ieeexplore.ieee.org/document/7929346
    [26]
    X. P. Xie, D. Yue, H. G. Zhang, and C. Peng, "Control synthesis of discrete-time T-S fuzzy systems: reducing the conservatism whilst alleviating the computational burden, " IEEE Trans. Cybern., vol. 47, no. 9, pp. 2480-2491, Sep. 2017. http://www.ncbi.nlm.nih.gov/pubmed/27390202
    [27]
    D. Lin, X. Y. Wang, F. Z. Nian, and Y. L. Zhang, "Dynamic fuzzy neural networks modeling and adaptive backstepping tracking control of uncertain chaotic systems, " Neurocomputing, vol. 73, no. 16-18, pp. 2873-2881, Oct. 2010. http://www.sciencedirect.com/science/article/pii/S0925231210003425
    [28]
    D. Lin and X. Y. Wang, "Observer-based decentralized fuzzy neural sliding mode control for interconnected unknown chaotic systems via network structure adaptation, " Fuzzy Sets Syst., vol. 161, no. 15, pp. 2066-2080, Aug. 2010. http://www.sciencedirect.com/science/article/pii/S0165011410000953
    [29]
    H. Y. Li, J. Y. Yu, C. Hilton, and H. H. Liu, "Adaptive sliding-mode control for nonlinear active suspension vehicle systems using T-S fuzzy approach, " IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 3328-3338, Aug. 2013. http://ieeexplore.ieee.org/document/6211418/
    [30]
    H. Y. Li, H. H. Liu, H. J. Gao, and P. Shi, "Reliable fuzzy control for active suspension systems with actuator delay and fault, " IEEE Trans. Fuzzy Syst., vol. 20, no. 2, pp. 342-357, Apr. 2012. http://ieeexplore.ieee.org/document/6064886/
    [31]
    S. Türkay and H. Akçay, "Aspects of achievable performance for quarter-car active suspensions, " J. Sound Vib., vol. 311, no. 1-2, pp. 440-460, Mar. 2008. http://www.sciencedirect.com/science/article/pii/S0022460X07007420
    [32]
    M. Yamashita, K. Fujimori, K. Hayakawa, and H. Kimura, "Application of H control to active suspension systems, " Automatica, vol. 30, no. 11, pp. 1717-1729, Nov. 1994. http://www.sciencedirect.com/science/article/pii/0005109894900744
    [33]
    H. P. Du, N. Zhang, and J. Lam, "Parameter-dependent input-delayed control of uncertain vehicle suspensions, " J. Sound Vib., vol. 317, no. 3-5, pp. 537-556, Nov. 2008. http://www.sciencedirect.com/science/article/pii/0005109894900744
    [34]
    J. Meng, "Frequency shift keyed narrowband interference rejection: optimal exponential weighting factor for the RLS algorithm, " IEE Proc. -Vis., Image Signal Process., vol. 152, no. 3, pp. 268-274, Jun. 2005. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1459900
    [35]
    G. Calvagno and D. C. Jr. Munson, "A frequency-domain approach to interpolation from a nonuniform grid, " Signal Process., vol. 52, no. 1, pp. 1-21, Jul. 1996. http://dl.acm.org/citation.cfm?id=235933.235934&coll=DL&dl=GUIDE&CFID=393266733&CFTOKEN=21812939
    [36]
    B. Hencey and A. G. Alleyne, "A KYP lemma for LMI regions, " IEEE Trans. Autom. Control, vol. 52, no. 10, pp. 1926-1930, Oct. 2007.
    [37]
    J. Collado, R. Lozano, and R. Johansson, "On Kalman-Yakubovich-Popov Lemma for stabilizable systems, " IEEE Trans. on Autom. Control, vol. 46, no. 7, pp. 1089-1093, Jul. 2001. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=935061
    [38]
    W. C. Sun, Y. Zhao, J. F. Li, L. X. Zhang, and H. J. Gao, "Active suspension control with frequency band constraints and actuator input delay, " IEEE Trans. Ind. Electron., vol. 59, no. 1, pp. 530-537, Jan. 2012. http://ieeexplore.ieee.org/document/5740340/
    [39]
    W. C. Sun, J. F. Li, Y. Zhao, and H. J. Gao, "Vibration control for active seat suspension systems via dynamic output feedback with limited frequency characteristic, " Mechatronics, vol. 21, no. 1, pp. 250-260, Feb. 2011. http://www.sciencedirect.com/science/article/pii/S0957415810001923
    [40]
    X. J. Su, P. Shi, L. G. Wu, and M. V. Basin, "Reliable filtering with strict dissipativity for T-S fuzzy time-delay systems, " IEEE Trans. Cybern., vol. 44, no. 12, pp. 2470-2483, Dec. 2014. http://www.ncbi.nlm.nih.gov/pubmed/24686311
    [41]
    C. Commault, J. M. Dion, and D. H. Trinh, "Observability preservation under sensor failure, " IEEE Trans. Autom. Control, vol. 53, no. 6, pp. 1554-1559, Jul. 2008. http://ieeexplore.ieee.org/document/4610017/
    [42]
    C. W. Wu, J. X. Liu, Y. Y. Xiong, and L. G. Wu, "Observer-based adaptive fault-tolerant tracking control of nonlinear nonstrict-feedback systems, " IEEE Trans. Neural Netw. Learn. Syst., 2017. to be published. doi: 10.1109/TNNLS.2017.2712619.
    [43]
    Z. G. Feng and J. Lam, "Robust reliable dissipative filtering for discrete delay singular systems, " Signal Process., vol. 92, no. 12, pp. 3010-3025, Dec. 2012. doi: 10.1016/j.sigpro.2012.06.003
    [44]
    Y. Izumikawa, K. Yubai, and J. Hirai, "Fault-tolerant control system of flexible arm for sensor fault by using reaction force observer, " IEEE/ASME Trans. Mechatron., vol. 10, no. 4, pp. 391-396, Aug. 2005. http://ieeexplore.ieee.org/document/1512161/
    [45]
    A. Chamseddine and H. Noura, "Control and sensor fault tolerance of vehicle active suspension, " IEEE Trans. Control Syst. Technol., vol. 16, no. 3, pp. 416-433, May 2008. http://ieeexplore.ieee.org/document/4436186/
    [46]
    W. C. Sun, H. J. Gao, and O. Kaynak, "Finite frequency H control for vehicle active suspension systems, " IEEE Trans. Control Syst. Technol., vol. 19, no. 2, pp. 416-422, Mar. 2011. http://citeseerx.ist.psu.edu/viewdoc/summary?cid=19464722
    [47]
    T. Iwasaki and S. Hara, "Generalized KYP lemma: Unified frequency domain inequalities with design applications, " IEEE Trans. Autom. Control, vol. 50, no. 1, pp. 41-59, Jan. 2005. http://ieeexplore.ieee.org/document/1381647/
    [48]
    P. Apkarian, H. D. Tuan, and J. Bernussou, "Continuous-time analysis, eigenstructure assignment, and H2 synthesis with enhanced linear matrix inequalities (LMI) characterizations, " IEEE Trans. Autom. Control, vol. 46, no. 12, pp. 1941-1946, Dec. 2001. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=975496
    [49]
    K. Tanaka and H. O. Wang, Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. New York: John Wiley & Sons, 2001.
    [50]
    P. Gahinet, A. Nemirovskii, A. J. Laub, and M. Chilali, "The LMI control toolbox, " in Proc. 33rd IEEE Conf. Decision and Control, Lake Buena Vista, FL, USA, vol. 3, pp. 2038-2041, 1994.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (1391) PDF downloads(78) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return