A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 6 Issue 1
Jan.  2019

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Song Ling, Huanqing Wang and Peter X. Liu, "Adaptive Fuzzy Dynamic Surface Control of Flexible-Joint Robot Systems With Input Saturation," IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 97-107, Jan. 2019. doi: 10.1109/JAS.2019.1911330
Citation: Song Ling, Huanqing Wang and Peter X. Liu, "Adaptive Fuzzy Dynamic Surface Control of Flexible-Joint Robot Systems With Input Saturation," IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 97-107, Jan. 2019. doi: 10.1109/JAS.2019.1911330

Adaptive Fuzzy Dynamic Surface Control of Flexible-Joint Robot Systems With Input Saturation

doi: 10.1109/JAS.2019.1911330
Funds:

the National Natural Science Foundation of China 61773051

the National Natural Science Foundation of China 61773072

the National Natural Science Foundation of China 61761166011

the Fundamental Research Fund for the Central Universities 2016RC021

the Fundamental Research Fund for the Central Universities 2017JBZ003

More Information
  • In this paper, we propose an adaptive fuzzy dynamic surface control (DSC) scheme for single-link flexible-joint robotic systems with input saturation. A smooth function is utilized with the mean-value theorem to deal with the difficulties associated with input saturation. An adaptive DSC design with an auxiliary first-order filter is used to solve the "explosion of complexity" problem. It is proved that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded, and the tracking error eventually converges to a small neighborhood around zero. The main advantage of the proposed method is that only one adaptation parameter needs to be updated, which reduces the computational burden significantly. Simulation results demonstrate the feasibility of the proposed scheme and the comparison results show that the improved DSC method can reduce the computational burden by almost two thirds in comparison with the standard DSC method.

     

  • loading
  • [1]
    T. K. Chang, A. Spowage, and K. Y. Chan, "Review of control and sensor system of flexible manipulator, " Journal of Intelligent & Robotic Systems, vol. 77, no. 1, pp. 187-213, 2015. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fb5cfc55d19d36e3412e9634fd4625fd
    [2]
    K. Melhem and W. Wang, "Global output tracking control of flexible joint robots via factorization of the manipulator mass matrix, " IEEE Transactions on Robotics, vol. 25, no. 2, pp. 428-437, 2009. doi: 10.1109/TRO.2009.2012016
    [3]
    J. R. Forbes and C. J. Damaren, "Design of optimal strictly positive real controllers using numerical optimization for the control of flexible robotic systems, " Journal of the Franklin Institute, vol. 348, no. 8, pp. 2191-2215, 2011. doi: 10.1016/j.jfranklin.2011.06.013
    [4]
    J. Kim and E. A. Croft, "Full-state tracking control for flexible joint robots with singular perturbation techniques, " IEEE Transactions on Control Systems Technology, doi: 10.1109/TCST.2017.2756962.
    [5]
    A. C. Huang and Y. C. Chen, "Adaptive sliding control for single-link flexible-joint robot with mismatched uncertainties, " IEEE Transactions on Control Systems Technology, vol. 12, no. 5, pp. 770-775, 2004. doi: 10.1109/TCST.2004.826968
    [6]
    A. D. Luca, B. Siciliano, and L. Zollo, "Pd control with on-line gravity compensation for robots with elastic joints: Theory and experiments, " Automatica, vol. 41, no. 10, pp. 1809-1819, 2005. doi: 10.1016/j.automatica.2005.05.009
    [7]
    J. S. Bang, H. Shim, K. P. Sang, and H. S.Jin, "Robust tracking and vibration suppression for a two-inertia system by combining backstepping approach with disturbance observer, " IEEE Transactions on Industrial Electronics, vol. 57, no. 9, pp. 3197-3206, 2010. doi: 10.1109/TIE.2009.2038398
    [8]
    S. K. Min and S. L. Jin, "Adaptive tracking control of flexible-joint manipulators without overparametrization, " Journal of Robotic Systems, vol. 21, no. 7, pp. 369-379, 2004. doi: 10.1002/(ISSN)1097-4563
    [9]
    W. Chang, Y. Li, and S. Tong, "Adaptive fuzzy backstepping tracking control for flexible robotic manipulator, " IEEE/CAA J. Autom. Sinica, doi: 10.1109/JAS.2017.7510886, 2017.
    [10]
    D. Swaroop, J. K. Hedrick, P. P. Yip, and J. C. Gerdes, "Dynamic surface control for a class of nonlinear systems, " IEEE Transactions on Automatic Control, vol. 45, no. 10, pp. 1893-1899, 2002. http://d.old.wanfangdata.com.cn/Periodical/kzyjc201202019
    [11]
    W. Si and X. Dong, "Adaptive neural dsc for nonlinear switched systems with prescribed performance and input saturation, " IEEE/CAA J. Autom. Sinica, doi: 10.1109/JAS.2017.7510661, 2017.
    [12]
    S. Su, "Output-feedback dynamic surface control for a class of nonlinear non-minimum phase systems, " IEEE/CAA J. Autom. Sinica, vol. 3, no. 1, pp. 96-104, 2016. doi: 10.1109/JAS.2016.7373767
    [13]
    H. Wang, P. X. Liu, and B. Niu, "Robust fuzzy adaptive tracking control for nonaffine stochastic nonlinear switching systems, " IEEE Transactions on Cybernetics, vol. 48, no. 8, pp. 2462-2471, 2018. doi: 10.1109/TCYB.2017.2740841
    [14]
    M. M. Polycarpou, "Stable adaptive neural control scheme for nonlinear systems, " IEEE Transactions on Automatic Control, vol. 41, no. 3, pp. 447-451, 2002. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=79932ab111d6e2a3dbe6f3874f279c87
    [15]
    L. X. Wang and J. M. Mendel, "Fuzzy basis functions, universal approximation, and orthogonal least-squares learning, " IEEE Transactions on Neural Networks, vol. 3, no. 5, pp. 807-814, 1992. doi: 10.1109/72.159070
    [16]
    L. Jin, S. Li, H. M. La, and X. Luo, "Manipulability optimization of redundant manipulators using dynamic neural networks, " IEEE Transactions on Industrial Electronics, vol. 64, no. 6, pp. 4710-4720, 2017. doi: 10.1109/TIE.2017.2674624
    [17]
    Y. Zhang, S. Li, J. Gui, and X. Luo, "Velocity-level control with compliance to acceleration-level constraints: A novel scheme for manipulator redundancy resolution, " IEEE Transactions on Industrial Informatics, vol. 14, no. 3, pp. 921-930, 2018. doi: 10.1109/TII.2017.2737363
    [18]
    S. C. Tong, X. L. He, and H. G. Zhang, "A combined backstepping and small-gain approach to robust adaptive fuzzy output feedback control, " IEEE Transactions on Fuzzy Systems, vol. 17, no. 5, pp. 1059-1069, 2009. doi: 10.1109/TFUZZ.2009.2021648
    [19]
    M. Mirshekaran, F. Piltan, Z. Esmaeili, T. Khajeaian, and M. Kazeminasab, "Design sliding mode modified fuzzy linear controller with application to flexible robot manipulator, " International Journal of Modern Education & Computer Science, vol. 5, no. 10, pp. 53-63, 2013. http://cn.bing.com/academic/profile?id=907ce5894f0ad5df8127d450044cb20b&encoded=0&v=paper_preview&mkt=zh-cn
    [20]
    H. Chaoui, W. Gueaieb, M. Biglarbegian, and M. C. E. Yagoub, "Computationally efficient adaptive type-2 fuzzy control of flexible-joint manipulators, " Robotics, vol. 2, no. 2, pp. 66-91, 2013. doi: 10.3390/robotics2020066
    [21]
    X. Luo, M. Zhou, S. Li, Y. Xia, Z. H. You, Q. Zhu, and H. Leung, "Incorporation of efficient second-order solvers into latent factor models for accurate prediction of missing QoS data, " IEEE Transactions on Cybernetics, vol. 48, no. 4, pp. 1216-1228, 2018. doi: 10.1109/TCYB.2017.2685521
    [22]
    S. Li, Z. H. You, H. Guo, X. Luo, and Z. Q. Zhao, "Inverse-free extreme learning machine with optimal information updating, " IEEE Transactions on Cybernetics, vol. 46, no. 5, pp. 1229-1241, 2016. doi: 10.1109/TCYB.2015.2434841
    [23]
    P. Sun and Z. Yu, "Tracking control for a cushion robot based on fuzzy path planning with safe angular velocity, " IEEE/CAA J. Autom. Sinica, vol. 4, no. 4, pp. 610-619, 2017. doi: 10.1109/JAS.2017.7510607
    [24]
    X. Luo, J. Sun, Z. Wang, S. Li, and M. Shang, "Symmetric and nonnegative latent factor models for undirected, high dimensional and sparse networks in industrial applications, " IEEE Transactions on Industrial Informatics, vol. 13, no. 6, pp. 3098-3107, 2017. doi: 10.1109/TII.2017.2724769
    [25]
    X. Luo, M. Zhou, S. Li, Z. You, Y. Xia, and Q. Zhu, "A nonnegative latent factor model for large-scale sparse matrices in recommender systems via alternating direction method, " IEEE Transactions on Neural Networks & Learning Systems, vol. 27, no. 3, pp. 579-592, 2016. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1b3a26299d2a8a0d45fbd4e4d51f20d1
    [26]
    S. Li, M. C. Zhou, X. Luo, and Z. H. You, "Distributed winner-takeall in dynamic networks, " IEEE Transactions on Automatic Control, vol. 62, no. 2, pp. 577-589, 2017. doi: 10.1109/TAC.2016.2578645
    [27]
    H. Yang and J. Liu, "An adaptive rbf neural network control method for a class of nonlinear systems, " IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 457-462, 2018. doi: 10.1109/JAS.2017.7510820
    [28]
    X. Luo, M. Zhou, Y. Xia, Q. Zhu, A. C. Ammari, and A. Alabdulwahab, "Generating highly accurate predictions for missing qos data via aggregating nonnegative latent factor models, " IEEE Transactions on Neural Networks & Learning Systems, vol. 27, no. 3, pp. 524-537, 2015. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9ea020b4a53845c6ba1596b8192872c5
    [29]
    Y. Yang, J. Tan, and D. Yue, "Prescribed performance control of onedof link manipulator with uncertainties and input saturation constraint, " IEEE/CAA J. Autom. Sinica, doi: 10.1109/JAS.2018.7511099, 2018.
    [30]
    Y. Li, S. Tong, and T. Li, "Hybrid fuzzy adaptive output feedback control design for uncertain mimo nonlinear systems with time-varying delays and input saturation, " IEEE Transactions on Fuzzy Systems, vol. 24, no. 4, pp. 841-853, 2016. doi: 10.1109/TFUZZ.2015.2486811
    [31]
    Y. Li, S. Tong, and T. Li, "Composite adaptive fuzzy output feedback control design for uncertain nonlinear strict-feedback systems with input saturation, " IEEE Transactions on Cybernetics, vol. 45, no. 10, pp. 2299-2308, 2015. doi: 10.1109/TCYB.2014.2370645
    [32]
    Q. Zhou, H. Li, C. Wu, L. Wang, and C. K. Ahn, "Adaptive fuzzy control of nonlinear systems with unmodeled dynamics and input saturation using small-gain approach, " IEEE Transactions on Systems Man & Cybernetics Systems, vol. 47, no. 8, pp. 1979-1989, 2017. http://ieeexplore.ieee.org/document/7572123/
    [33]
    X. Zhao, H. Yang, W. Xia, and X. Wang, "Adaptive fuzzy hierarchical sliding-mode control for a class of mimo nonlinear time-delay systems with input saturation, " IEEE Transactions on Fuzzy Systems, vol. 25, no. 5, pp. 1062-1077, 2017. doi: 10.1109/TFUZZ.2016.2594273
    [34]
    R. Bai, "Adaptive sliding-mode control of automotive electronic throttle in the presence of input saturation constraint, " IEEE/CAA J. Autom. Sinica, vol. 5, no. 4, pp. 878-884, 2018. doi: 10.1109/JAS.2018.7511147
    [35]
    Z. Fu, W. Xie, S. Rakheja, and J. Na, "Observer-based adaptive optimal control for unknown singularly perturbed nonlinear systems with input constraints, " IEEE/CAA J. Autom. Sinica, vol. 4, no. 1, pp. 48-57, 2017. doi: 10.1109/JAS.2017.7510322
    [36]
    S. J. Yoo, J. B. Park, and Y. H. Choi, Adaptive dynamic surface control of flexible-joint robots using self-recurrent wavelet neural networks, " IEEE Transactions on Systems Man & Cybernetics, Part B Cybernetics, vol. 36, no. 3, pp. 1342-1355, 2006. http://europepmc.org/abstract/MED/17186810
    [37]
    B. Ren, P. P. San, S. S. Ge, and H. L. Tong, "Adaptive dynamic surface control for a class of strict-feedback nonlinear systems with unknown backlash-like hysteresis, " in Proc. 2009 American Control Conference, St. Louis, MO, USA, 2009, pp. 4482-4487.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (1970) PDF downloads(113) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return