A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 6 Issue 2
Mar.  2019

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Qinghua Zhu, Yan Qiao and Naiqi Wu, "Optimal Integrated Schedule of Entire Process of Dual-blade Multi-cluster Tools From Start-up to Close-down," IEEE/CAA J. Autom. Sinica, vol. 6, no. 2, pp. 553-565, Mar. 2019. doi: 10.1109/JAS.2019.1911411
Citation: Qinghua Zhu, Yan Qiao and Naiqi Wu, "Optimal Integrated Schedule of Entire Process of Dual-blade Multi-cluster Tools From Start-up to Close-down," IEEE/CAA J. Autom. Sinica, vol. 6, no. 2, pp. 553-565, Mar. 2019. doi: 10.1109/JAS.2019.1911411

Optimal Integrated Schedule of Entire Process of Dual-blade Multi-cluster Tools From Start-up to Close-down

doi: 10.1109/JAS.2019.1911411
Funds:

National Natural Science Foundation of China 61673123

National Natural Science Foundation of China 61803397

the Science and Technology Development Fund (FDCT) of Macau 106/2016/A3

the Science and Technology Development Fund (FDCT) of Macau 005/2018/A1

the Science and Technology Development Fund (FDCT) of Macau 011/2017/A

the Science and Technology Development Fund (FDCT) of Macau 0017/2019/A1

More Information
  • Multi-cluster tools are widely used in majority of wafer fabrication processes in semiconductor industry. Smaller lot production, thinner circuit width in wafers, larger wafer size, and maintenance have resulted in a large quantity of their start-up and close-down transient periods. Yet, most of existing efforts have been concentrated on scheduling their steady states. Different from such efforts, this work schedules their transient and steady-state periods subject to wafer residency constraints. It gives the schedulability conditions for the steady-state scheduling of dual-blade robotic multi-cluster tools and a corresponding algorithm for finding an optimal schedule. Based on the robot synchronization conditions, a linear program is proposed to figure out an optimal schedule for a start-up period, which ensures a tool to enter the desired optimal steady state. Another linear program is proposed to find an optimal schedule for a close-down period that evolves from the steady state period. Finally, industrial cases are presented to illustrate how the provided method outperforms the existing approach in terms of system throughput improvement.

     

  • loading
  • [1]
    J. G. Yi, S. W. Ding, D. Z. Song, and M. T. Zhang, "Steady-state throughput and scheduling analysis of multi-cluster tools for semiconductor manufacturing: a decomposition approach, " IEEE Trans. Automat. Sci. Eng., vol. 5, no. 2, pp. 321-336, 2008. doi: 10.1109/TASE.2007.906678
    [2]
    Y. Hou, N. Q. Wu, M. C. Zhou, and Z. W. Li, "Pareto-optimization for scheduling of crude oil operations in refinery via genetic algorithm, " IEEE Trans. Syst., Man, Cybern.: Syst., vol. 47, no. 3, pp. 517-530, Mar. 2017. http://ieeexplore.ieee.org/document/7366610/
    [3]
    N. Q. Wu, Z. W. Li, and T. Qu, "Energy efficiency optimization in scheduling crude oil operations of refinery based on linear programming, " J. Cleaner Prod., vol. 166, pp. 49-57, Nov. 2017. https://www.sciencedirect.com/science/article/pii/S0959652617316785
    [4]
    N. Q. Wu, M. C. Zhou, L. P. Bai, and Z. W. Li, "Short-term scheduling of crude oil operations in refinery with high fusion point oil and two transportation pipelines, " Enterp. Inform. Syst., vol. 10, no. 6, pp. 581-610, May 2016. https://www.sciencedirect.com/science/article/pii/S0020025517308320
    [5]
    N. Q. Wu, M. C. Zhou, and Z. W. Li, "Short-term scheduling of crude-oil operations: Petri net-based control-theoretic approach, " IEEE Robot. Autom. Mag, vol. 22, no. 2, pp. 64-76, Jun. 2015. https://ieeexplore.ieee.org/document/7108023/
    [6]
    S. W. Zhang, N. Q. Wu, Z. W. Li, T. Qu, and C. D. Li, "Petri net-based approach to short-term scheduling of crude oil operations with less tank requirement, " Inform. Sci., vol. 417, pp. 247-261, Nov. 2017.
    [7]
    Y. -J. Joo and T. -E. Lee, "Virtual control — a virtual cluster tool for testing and verifying a cluster tool controller and a scheduler, " IEEE Robot. Autom. Mag., vol. 11, no. 3, pp. 33-49, 2004. doi: 10.1109/MRA.2004.1337825
    [8]
    W. -S. Kim and J. R. Morrison, "On equilibrium probabilities for the delays in deterministic flow lines with random arrivals, " IEEE Trans. Automat. Sci. Eng., vol. 12, no. 1, pp. 62-74, Jan. 2015.
    [9]
    W. S. Kim, Y. H. Jeon, S. J. Kwak, D. Y. Y. Lee, and H. J. Yoon, "High-fidelity simulation of integrated single-wafer processing tools for evaluation of scheduling algorithms, " Robot. Comput. Integr. Manuf., vol. 25, no. 1, pp. 107-121, Feb. 2009.
    [10]
    T. -E. Lee, H. -J. Kim, D. -H. Roh, and R. S. Sreenivas, "Characterizing token delays of timed event graphs for $K$-cyclic schedules, " IEEE Trans. Autom. Control, vol. 62, no. 2, pp. 961-966, 2017. doi: 10.1109/TAC.2016.2570122
    [11]
    J. R. Morrison and P. M. Donald, "Performance evaluation of photolithography cluster tools, " OR Spectrum, vol. 29, no. 3, pp. 375-389, 2007. doi: 10.1007/s00291-006-0061-4
    [12]
    N. Q. Wu, C. B. Chu, F. Chu, and M. C. Zhou, "A Petri net method for schedulability and scheduling problems in single-arm cluster tools with wafer residency time constraints, " IEEE Trans. Semiconduct. Manufact., vol. 21, no. 2, pp. 224-237, 2008. doi: 10.1109/TSM.2008.2000425
    [13]
    N. Q. Wu, F. Chu, C. B. Chu, and M. C. Zhou, "Petri net modeling and cycle time analysis of dual-arm cluster tools with wafer revisiting, " IEEE Trans. Syst., Man, Cybern.: Syst., vol. 43, no. 1, pp. 196-207, Jan. 2013.
    [14]
    N. Q. Wu and M. C. Zhou, "A closed-form solution for schedulability and optimal scheduling of dual-arm cluster tools with wafer residency time constraint based on steady schedule analysis, " IEEE Trans. Automat. Sci. Eng., vol. 7, no. 2, pp. 303-315, 2010. doi: 10.1109/TASE.2008.2008633
    [15]
    N. Q. Wu and M. C. Zhou, "Schedulability analysis and optimal scheduling of dual-arm cluster tools with residency time constraint and activity time variation, " IEEE Trans. Autom. Sci. Eng., vol. 9, no. 1, pp. 203-209, Jan. 2012. https://ieeexplore.ieee.org/document/5957289/
    [16]
    N. Q. Wu and M. C. Zhou, "Modeling, analysis and control of dual-arm cluster tools with residency time constraint and activity time variation based on Petri nets, " IEEE Trans. Autom. Sci. Eng., vol. 9, no. 2, pp. 446-454, Apr. 2012. https://ieeexplore.ieee.org/document/6138879/
    [17]
    F. J. Yang, N. Q. Wu, Y. Qao, M. C. Zhou, and Z. W. Li, "Scheduling of single-arm cluster tools for an atomic layer deposition process with residency time constraints, " IEEE Trans. Syst., Man, Cybern.: Syst., vol. 47, no. 3, pp. 502-516, Mar. 2017. http://ieeexplore.ieee.org/document/7395391/
    [18]
    Y. Qiao, N. Q. Wu, F. J. Yang, M. C. Zhou, and Q. H. Zhu, "Wafer sojourn time fluctuation analysis of time-constrained dual-arm cluster tools with wafer revisiting and activity time variation, " IEEE Trans. Syst., Man, Cybern.: Syst., vol. 48, no. 4, pp. 622-636, Apr. 2018. https://www.sciencedirect.com/science/article/pii/S1474667015355889
    [19]
    J. -H. Kim, T. -E. Lee, H. -Y. Lee, and D. -B. Park, "Scheduling analysis of time-constrained dual-armed cluster tools, " IEEE Trans. Semiconduct. Manufact., vol. 16, no. 8, pp. 521-534, 2003. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=46a3852da21575dfb69592748e4b898b
    [20]
    W. M. Zuberek, "Timed Petri nets in modeling and analysis of cluster tools, " IEEE Trans. Robot. Autom, vol. 17, no. 5, pp. 562-575, Oct. 2001.
    [21]
    X. W. Guo, S. X. Liu, M. C. Zhou, and G. D. Tian, "Disassembly sequence optimization for large-scale products with multiresource constraints using scatter search and Petri Nets, " IEEE Trans. Cybern., vol. 46, no. 11, pp. 2435-2446, Nov. 2016. https://ieeexplore.ieee.org/document/7297813/
    [22]
    Y. F. Chen, Z. W. Li, and A. -A. Abdulrahman, "Non pure Petri net supervisors for optimal deadlock control of flexible manufacturing systems, " IEEE Trans. Syst., Man, Cybern., Syst., vol. 43, no. 2, pp. 252 -265, 2013. doi: 10.1109/TSMCA.2012.2202108
    [23]
    B. Huang, M. C. Zhou, P. Y. Zhang, and J. Yang, "Speedup techniques for multiobjective integer programs in designing optimal and structurally simple supervisors of AMS, " IEEE Trans. Syst., Man, Cybern., Syst., vol. 48, no. 1, pp. 77-88, 2018. http://ieeexplore.ieee.org/document/7551139/
    [24]
    B. Huang, M. C. Zhou, Y. S. Huang, and Y. W. Yang, "Supervisor synthesis for FMS based on critical activity places, " IEEE Trans. Syst., Man, Cybern., Syst., 2017, DOI: 10.1109/TSMC.2017.2732442.
    [25]
    L. P. Bai, N. Q. Wu, Z. W. Li, and M. C. Zhou, "Optimal one-wafer cyclic scheduling and buffer space configuration for single-arm multicluster tools with linear topology, " IEEE Trans. Syst., Man, Cybern.: Syst., vol. 46, no. 10, pp. 1456-1467, Oct. 2016.
    [26]
    W. K. Chan, J. G. Yi, and S. W. Ding, "Optimal scheduling of multi-cluster tools with constant robot moving times, Part Ⅰ: two-cluster Analysis, " IEEE Trans. Automat. Sci. Eng., vol. 8, no. 1, pp. 5-16, 2011. doi: 10.1109/TASE.2010.2046891
    [27]
    S. W. Ding, J. G. Yi, and M. T. Zhang, "Multicluster tools scheduling: an integrated event graph and network model approach, " IEEE Trans. Semiconduct. Manufact., vol. 19, no. 3, pp. 339-351, 2006. doi: 10.1109/TSM.2006.879414
    [28]
    H. N. Geismar, S. Chelliah, and N. Ramanan, "Increasing throughput for robotic cells with parallel machines and multiple robots, " IEEE Trans. Automat. Sci. Eng., vol. 1, no. 1, pp. 84-89, 2004. doi: 10.1109/TASE.2004.829430
    [29]
    H. N. Geismar, M. Pinedo, and C. Sriskandarajah, "Robotic cells with parallel machines and multiple dual gripper robots: a comparative overview, " ⅡE Trans., vol. 40, no. 12, pp. 1211-1227, 2008. doi: 10.1080/07408170801965108
    [30]
    D. Jevtic and S. Venkatesh, "Method and apparatus for scheduling wafer processing within a multiple chamber semiconductor wafer processing tool having a multiple blade robot, " U.S. Patent, vol. 6, 224, 638, 2001.
    [31]
    D. -K. Kim, H. -J. Kim, and T. -E. Lee, "Optimal scheduling for sequentially connected cluster tools with dual-armed robots and a single input and output module, " Int. J. Prod. Res., vol. 55, no. 11, pp. 3092- 3109, 2017. doi: 10.1080/00207543.2016.1243819
    [32]
    X. Li and R. Y. K. Fung, "Optimal $K$-unit cycle scheduling of two-cluster tools with residency constraints and general robot moving times, " J. Scheduling, vol. 19, no. 2, pp. 165-176, Apr. 2016.
    [33]
    X. Li and R. Y. K. Fung, "A dynamic scheduling algorithm for singe-arm two-cluster tools with flexible processing times." Eng. Optim., vol. 50, no. 2, pp. 329-346, 2018. doi: 10.1080/0305215X.2017.1310209
    [34]
    T. Nishi and I. Matsumoto, "Petri net decomposition approach to deadlock-free and non-cyclic scheduling of dual-armed cluster tools, " IEEE Trans. Automat. Sci. Eng., vol. 12, no. 1, pp. 281-294, Jan. 2015. doi: 10.1177/1687814016646503
    [35]
    F. Yang, N. Wu, Y. Qiao, and M. Zhou, "Optimal one-wafer cyclic scheduling of hybrid multi robot cluster tools with tree topology, " IEEE Trans. Syst., Man, Cybern.: Syst., vol. 48, no. 2, pp. 289-298, Feb. 2018.
    [36]
    M. Dawande, H. N. Geismar, S. P. Sethi, and C. Sriskandarajah, Throughput Optimization in Robotic Cells, New York: Springer, 2007.
    [37]
    K. Park and J. R. Morrison, "Controlled wafer release in clustered photolithography tools: flexible flow line job telease scheduling and an LMOLP heuristic, " IEEE Trans. Automat. Sci. Eng., vol. 12, no. 2, pp. 642-655, Apr. 2015.
    [38]
    Q. H. Zhu, N. Q. Wu, Y. Qiao, and M. C. Zhou, "Petri net-based optimal one-wafer scheduling of single-Arm multi-cluster tools in semiconductor manufacturing, " IEEE Trans. Semiconduct. Manufact., vol. 26, no. 4, pp. 578-591, 2013. doi: 10.1109/TSM.2013.2278378
    [39]
    Q. H. Zhu, N. Q. Wu, Y. Qiao, and M. C. Zhou, "Scheduling of single-arm multi-cluster tools with wafer residency time constraints in semiconductor manufacturing, " IEEE Trans. Semiconduct. Manufact., vol. 28, no. 1, pp. 117-125, 2015. doi: 10.1109/TSM.2014.2375880
    [40]
    M. X. Liu and B. H. Zhou, "Modelling and scheduling analysis of multi-cluster tools with residency constraints based on time constraint sets, " Int. J. Prod.. Res., vol. 51, no. 16, pp. 4835-4852, 2013. doi: 10.1080/00207543.2013.774490
    [41]
    A. Davenport, "Integrated maintenance scheduling for semiconductor manufacturing, " in Proc. 7th Int. Conf. CP AI OR, Bologna, Italy, 2010, pp. 92-96.
    [42]
    J. Ramírez-Hernández, J. Crabtree, X. Yao, E. Fernandez, M. C. Fu, M. Janakiram, S. I. Marcus, M. O'Connor, and N. Patel, "Optimal preventive maintenance scheduling in semiconductor manufacturing systems: software tool and simulation case studies, " IEEE Trans. Semiconduct. Manufact., vol. 23, no. 3, pp. 477-489, Aug. 2010.
    [43]
    X. Yao, E. Fernández-Gaucherand, M. C. F. Fu, and S. I. Marcus, "Optimal preventive maintenance scheduling in semiconductor manufacturing, " IEEE Trans. Semiconduct. Manufact., vol. 17, no. 3, pp. 345- 356, Aug. 2004. http://ieeexplore.ieee.org/document/1321132/
    [44]
    S. R. Montgomery, "Higher profits from intelligent semiconductor-equipment maintenance, " Future Fab International, vol. 8, no. 17, pp. 63-67, 2000.
    [45]
    E. Huang, K. S. Kwon, and L. McGinnis, "Toward on-demand wafer fab simulation using formal structure & behavior models, " in Proc. Winter Simulation Conf., Miami, Florida, USA, 2008, pp. 2341-2349.
    [46]
    H. -J. Kim, J. -H. Lee, and T. -E. Lee, "Noncyclic scheduling of cluster tools with a branch and bound algorithm, " IEEE Trans. Automat. Sci. Eng., vol. 12, no. 2, pp. 690-700, 2015. doi: 10.1109/TASE.2013.2293552
    [47]
    S. T. Shikalgar, D. Fronckowiak, and E. A. MacNair, "Application of cluster tool modeling to a 300 mm fab simulation, " in Proc. Winter Simulation Conf., New Orleans, LA, USA, 2003, pp. 1394-1397.
    [48]
    D. -K. Kim, T. -E. Lee, and H. -J. Kim, "Optimal scheduling of transient cycles for single-armed cluster tools with parallel chambers, " IEEE Trans. Automat. Sci. Eng., vol. 13, no. 2, pp. 1165-1175, 2016. doi: 10.1109/TASE.2015.2443107
    [49]
    D. -K. Kim, T. -E. Lee, and H. -J. Kim, "Optimal scheduling of transient cycles for single-armed cluster tools, " in Proc. IEEE Int. Conf. Auto. Sci. Eng., Madison, WI, USA, 2013, pp. 874-879.
    [50]
    T. -K. Kim, C. Junga, and T. -E. Lee, "Scheduling start-up and close-down periods of dual-armed cluster tools with wafer delay regulation, " Int. J. Prod. Res., vol. 50, no. 10, pp. 2785-2795, 2012. doi: 10.1080/00207543.2011.590949
    [51]
    H. -J. Kim, J. -H. Lee, C. Jung, and T. -E. Lee, "Scheduling cluster tools with ready time constraints for consecutive small lots, " IEEE Trans. Automat. Sci. Eng., vol. 10, no. 1, pp. 145-159, 2013. doi: 10.1109/TASE.2012.2220355
    [52]
    J. -H. Lee, H. -J. Kim, and T. -E. Lee, "Scheduling lot switching operations for cluster tools, " IEEE Trans. Semiconduct. Manufact., vol. 26, no. 4, pp. 592-601, 2013. doi: 10.1109/TSM.2013.2281083
    [53]
    J. -H. Lee and H. -J. Kim, "Completion time analysis of wafer lots in single-armed cluster tools with parallel processing modules, " IEEE Trans. Automat. Sci. Eng., vol. 14, no. 4, pp. 1622-1633, 2017. doi: 10.1109/TASE.2017.2690443
    [54]
    H. -Y. Jin and J. R. Morrison, "Transient scheduling of single armed cluster tools: Algorithms for wafer residency constraints, " in Proc. IEEE Int. Conf. Auto. Sci. Eng., Madison, WI, USA, 2013, pp. 856-861.
    [55]
    Y. Qiao, M. Zhou, N. Wu, and Q. Zhu, "Scheduling and control of Startup process for single-arm cluster tools with residency time constraints, " IEEE Trans. Control Syst. Technol., vol. 25, no. 4, pp. 1243 -1256, 2017. doi: 10.1109/TCST.2016.2598762
    [56]
    U. Wikborg and T. -E. Lee, "Noncyclic scheduling for timed discrete event systems with application to single-armed cluster tools using Pareto-optimal optimization, " IEEE Trans. Automat. Sci. Eng., vol. 10, no. 3, pp. 689-710, 2013. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f3cf117a4b7b47d27ec59c9b0e10577e
    [57]
    F. Yang, Y. Qiao, K. Gao, N. Wu, Y. Zhu, I. W. Simon, and R. Su, "Efficient approach to scheduling of transient processes for time-constrained single-arm cluster tools with parallel chambers, " IEEE Trans. Syst., Man, Cybern.: Syst., 2018. DOI: 10.1109/TSMC.2018.2852 724.
    [58]
    Q. H. Zhu, M. C. Zhou, Y. Qiao, and N. Q. Wu. "Petri net modeling and scheduling of a close-down process for time-constrained single-arm cluster tools, " IEEE Trans. Syst., Man, Cybern.: Syst., vol. 48, no. 3, pp. 389-400, Mar. 2018.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(3)

    Article Metrics

    Article views (1456) PDF downloads(29) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return