IEEE/CAA Journal of Automatica Sinica
Citation:  Xiangze Lin, Shuaiting Huang, Wanli Zhang and Shihua Li, "Finitetime Feedback Stabilization of a Class of Inputdelay Systems With Saturating Actuators via Digital Control," IEEE/CAA J. Autom. Sinica, vol. 6, no. 5, pp. 12811290, Sept. 2019. doi: 10.1109/JAS.2019.1911525 
[1] 
S. Xu and L. James, " A survey of linear matrix inequality techniques in stability analysis of delay systems,” Int. J. Syst. Sci., vol. 39, no. 12, pp. 1095–1113, 2008. doi: 10.1080/00207720802300370

[2] 
B. Chen, S. Wang, and H. Lu, " Stabilization of timedelay systems containing saturating actuators,” Int. J. Control., vol. 47, no. 3, pp. 867–881, 1988. doi: 10.1080/00207178808906058

[3] 
X. Wang and A. Saberi, " Stabilization of linear system with input saturation and unknown constant delays,” Autom., vol. 49, pp. 3632–3640, 2013. doi: 10.1016/j.automatica.2013.09.007

[4] 
G. Song, T. Li, and K. Hu, " Observerbased quantized control of nonlinear systems with input saturation,” Non. Dyn., vol. 86, no. 2, pp. 1157–1169, 2016. doi: 10.1007/s1107101629543

[5] 
X. Z. Lin, X. L. Li, and S. H. Li, " Finitetime stabilization of switched linear systems with nonlinear saturating actuators,” J. Franklin Inst., vol. 351, no. 3, pp. 1464–1482, 2014. doi: 10.1016/j.jfranklin.2013.11.013

[6] 
Z. Lin and H. Fang, " On asymptotic stabilizability of linear systems with delayed input,” IEEE Trans. Autom. Control., vol. 52, no. 6, pp. 998–1013, 2007.

[7] 
S. Tarbouriech and J. Silva, " Synthesis of controllers for continuous time delay systems with saturating controls via LMIs,” IEEE Trans. Autom. Control., vol. 45, no. 1, pp. 105–111, 2000. doi: 10.1109/9.827364

[8] 
J. Shen and F. Kung, " Stabilization of inputdelay systems with saturating actuator,” Int. J. Control., vol. 50, no. 5, pp. 1667–1680, 1989. doi: 10.1080/00207178908953458

[9] 
B. Du, J. Lam, and S. Zhan, " Stabilization for state/input delay systems via static and integral output feedback,” Autom., vol. 46, no. 12, pp. 2000–2007, 2010. doi: 10.1016/j.automatica.2010.08.005

[10] 
U. Hakki and A. Iftar, " Stable controller design for systems with multiple input/output timedelays,” Autom., vol. 48, no. 3, pp. 563–568, 2012. doi: 10.1016/j.automatica.2012.01.001

[11] 
J. Cheng, S. Chen, and Z. Liu, " Robust finitetime sampleddata control of linear systems subject to random occurring delays and its application to FourTank system,” Appl. Math. Comput., vol. 281, pp. 55–76, 2016.

[12] 
X. D. Zhao, H. J. Yang, and W. G. Xia, " Adaptive fuzzy hierarchical sliding mode control for a class of MIMO nonlinear timedelay systems with input saturation,” IEEE Trans. Fuzzy Syst., vol. 25, no. 5, pp. 1062–1077, 2016.

[13] 
D. Rew, M. Tahk, and H. Cho, " Shorttime stability of proportional navigation guidance loop,” IEEE Trans. Aerosp and Electron. Syst., vol. 32, no. 3, pp. 1107–1115, 1996.

[14] 
F. Amato, M. Ariola, and P. Dorato, " Finitetime stabilization via dynamic output feedback,” Autom., vol. 42, pp. 337–342, 2006. doi: 10.1016/j.automatica.2005.09.007

[15] 
P. Dorato. " Short time stability in linear timevarying systems,” in Proc. the IRE Int. Convention Record Part 4, pp. 83–87, 1961.

[16] 
L. Weiss and F. Infante, " Finite time stability under perturbing forces and on product spaces,” IEEE Trans. Autom. Control., vol. 12, pp. 44–59, 1967.

[17] 
H. D. D’Angelo, Linear Timevarying Systems: Analysis and Synthesis. Boston: Allyn and Bacon, MA, 1970.

[18] 
X. Z. Lin, X. L. Li, and S. H. Li, " Finitetime boundedness for switched systems with sector bounded nonlinearity and constant time delay,” Appl. Math. Comput., vol. 274, pp. 25–40, 2016.

[19] 
X. Z. Lin, S. H. Li, and Y. Zou, " Finitetime stabilization of switched linear time delay systems with saturating actuators,” Appl. Math. Comput., vol. 299, pp. 66–79, 2017.

[20] 
L. V. Hien and D. T. Son, " Finitetime stability of a class of nonautonomous neural networks with heterogeneous proportional delays,” Appl. Math. Comput., vol. 251, no. 15, pp. 14–23, 2015.

[21] 
X. J. Chen and J. Zhang, " Tiedong ma parameter estimation and topology identification of uncertain general fractionalorder complex dynamical networks with time delay,” IEEE/CAA J. Autom. Sinica, vol. 3, no. 3, pp. 295–303, 2016. doi: 10.1109/JAS.2016.7508805

[22] 
Z. Y. Nie, Q. G. Wang, R. J. Liu, and Y. H. Lan, " Identification and PID control for a class of delay Fractionalorder systems,” IEEE/CAA J. Autom. Sinica, vol. 3, no. 4, pp. 463–476, 2016. doi: 10.1109/JAS.2016.7510103

[23] 
D. Shi and T. Chen, " On finitehorizon

[24] 
F. Aamto and M. Ariola, " Finitetime control of discretetime linear system,” IEEE Trans. Autom. Control, vol. 50, pp. 724–729, 2005. doi: 10.1109/TAC.2005.847042

[25] 
W. Kang, S. Zhong, and K. Shi, " Finitetime stability for discretetime system with timevarying delay and nonlinear perturbations,” ISA Trans., vol. 60, pp. 67–73, 2016. doi: 10.1016/j.isatra.2015.11.006

[26] 
M. Chen, X. Yang, and H. Shen, " Finitetime asynchronous h control for Markov jump repeated scalar nonlinear systems with input constraints,” Appl. Math. Comput., vol. 275, no. 15, pp. 172–180, 2016.

[27] 
G. Wang, Z. Li, and Q. Zhang, " Robust finitetime stability and stabilization of uncertain Markovian jump systems with timevarying delay,” Appl. Math. Comput., vol. 293, no. 15, pp. 377–393, 2017.

[28] 
S. Mobayen, " Finitetime stabilization of a class of chaotic systems with matched and unmatched uncertainties: an LMI approach,” Complexity, vol. 21, no. 5, pp. 14–19, 2014.

[29] 
W. J. Gu, Y. G. Yu, and W. Hu, " Artificial bee colony algorithmbased parameter estimation of fractionalorder chaotic system with time delay,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 1, pp. 107–113, 2017. doi: 10.1109/JAS.2017.7510340

[30] 
X. Z. Lin, C. Chen, and C. J. Qian, " Smooth output feedback stabilization of a class of planar switched nonlinear systems under arbitrary switchings,” Autom., vol. 82, pp. 314–318, 2017. doi: 10.1016/j.automatica.2017.03.020

[31] 
X. Z. Lin, H. B. Du, S. H. Li, and Y. Zou, " Finitetime stability and finitetime weighted L2gain analysis for switched systems with timevarying delay,” IET Control Theory Applic., vol. 7, no. 7, pp. 1058–1069, 2013. doi: 10.1049/ietcta.2012.0551

[32] 
X. Z. Lin, X. L. Li, L. Chen, and S. H. Li, " Smooth output feedback stabilization for a class of highorder switched nonlinear systems,” Non. Analy.:Hybrid Sys., vol. 29, pp. 34–53, 2018. doi: 10.1016/j.nahs.2017.12.003

[33] 
X. Y. Yu, X. J. F. Hong, J. Qi, L. L. Ou, and Y. L. He, " Research on the Loworder control strategy of the power system with time delay,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 501–508, 2018. doi: 10.1109/JAS.2017.7510835

[34] 
Y. H. Sun, Y. X. Wang, Z. N. Wei, G. J. Sun, and X. P. Wu, " Robust H_{∞} load frequency control of multiarea power system with time delay: a sliding mode control approach,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 610–617, 2018. doi: 10.1109/JAS.2017.7510649

[35] 
H. L. Ren, G. D. Zong, and L. L. Hou, " Finitetime resilient decentralized control for interconnected impulsive switched systems with neutral delay,” ISA Trans., vol. 67, pp. 19–29, 2017. doi: 10.1016/j.isatra.2017.01.013

[36] 
F. Amato, F. D. Tommasi, and A. Pironti, " Necessary and sufficient conditions for finitetime stability of impulsive dynamical linear systems,” Autom., vol. 49, no. 8, pp. 2546–2550, 2013. doi: 10.1016/j.automatica.2013.04.004

[37] 
J. F. Wang and C. F. Liu, " Stabilization of uncertain systems with Markovian modes of time delay and quantization density,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 463–470, 2018. doi: 10.1109/JAS.2017.7510823

[38] 
L. Rosier, " Homogeneous Lyapunov function for homogeneous continuous vector field,” Sys. Contr. Lett., vol. 19, no. 4, pp. 467–473, 1992.

[39] 
S. P. Bhat and D. S. Bernstein, " Finitetime stability of continuous autonomous systems,” SIAM J. Control Optim., vol. 38, no. 3, pp. 751–766, 2000. doi: 10.1137/S0363012997321358

[40] 
Y. Orlov, " Finite time stability and robust control synthesis of uncertain switched systems,” SIAM J. Control and Optim, vol. 43, no. 4, pp. 1253–1271, 2005.

[41] 
X. Z. Lin, S. T. Huang, S. H. Li, and Y. Zou. " Finitetime feedback control of an inputdelay system with nonlinear saturating actuators”. Trans. Inst. Meas. Control, vol. 40, no. 10, doi: 014233121771383, Jul. 2017.

[42] 
K. J. Astrom and B. Wittenmark. ComputerControlled Systems: Theory and Design. Englewood Cliffs, NJ: PrenticeHall, 1984.

[43] 
T. Chen and B. A. Francis, " Input output stability of sampleddata systems,” IEEE Trans. Autom. Control, vol. 36, pp. 50–58, 1991. doi: 10.1109/9.62267

[44] 
T. Chen and B. A. Francis. Optimal Sampleddata Control Systems. Springer London, 1995.

[45] 
S. Hara, Y. Yamamoto, and H. Fujioka. " Modern and classical analysis/ synthesis methods in sampleddata control.” in Proc. the 35th Conf. Decision and Control, pp. 1251–1255, 1996.

[46] 
L. Hu, J. Lam, Y. Cao, and H. Shao, " A linear matrix inequality approach to robust H2 sampleddata control for linear uncertain systems,” IEEE Trans. Sys.,Man. Cyber., vol. 33, pp. 149–155, 2003.

[47] 
X. Z. Lin, S. T. Huang, and S. H. Li. " Finitetime feedback stabilization of an inputdelay system via linear sampleddata control.” in Proc. of the 37th Chinese Control Conf., pp. 3059–3067, 2018.

[48] 
B. Chen, S. Wang, and H. Lu, " Stabilization of timedelay systems containing saturating actuator,” Int. J. Control, vol. 47, no. 3, pp. 867–881, 1998.

[49] 
F. Amato, M. Ariola, and P. Dorato, " Finitetime control of linear systems subject to parametric uncertainties and disturbances,” Autom., vol. 37, pp. 1459–1463, 2001. doi: 10.1016/S00051098(01)000875

[50] 
F. Amato, M. Carbone, M. Ariola, and C. Cosentino. " Finitetime stability of discretetime systems.” in Proc. of American Control Conf., pp. 1440–1444, 2004.

[51] 
C. Desoer and M. Vidyasagar. Feedback Systems: InputOutput Properties. New York: Academic Press, 1975.
