A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 6 Issue 5
Sep.  2019

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 6.171, Top 11% (SCI Q1)
    CiteScore: 11.2, Top 5% (Q1)
    Google Scholar h5-index: 51, TOP 8
Turn off MathJax
Article Contents
Xiangze Lin, Shuaiting Huang, Wanli Zhang and Shihua Li, "Finite-time Feedback Stabilization of a Class of Input-delay Systems With Saturating Actuators via Digital Control," IEEE/CAA J. Autom. Sinica, vol. 6, no. 5, pp. 1281-1290, Sept. 2019. doi: 10.1109/JAS.2019.1911525
Citation: Xiangze Lin, Shuaiting Huang, Wanli Zhang and Shihua Li, "Finite-time Feedback Stabilization of a Class of Input-delay Systems With Saturating Actuators via Digital Control," IEEE/CAA J. Autom. Sinica, vol. 6, no. 5, pp. 1281-1290, Sept. 2019. doi: 10.1109/JAS.2019.1911525

Finite-time Feedback Stabilization of a Class of Input-delay Systems With Saturating Actuators via Digital Control

doi: 10.1109/JAS.2019.1911525
Funds:  This work was supported by the National Natural Science Foundation of China (61773216) and Natural Science Foundation of Jiangsu Province of China (BK20171386)
More Information
  • In this paper, the problem of making an input-delay system with saturating actuators finite-time stable by virtue of digital control is investigated. A digital state feedback controller and digital observer-controller compensator are designed for two cases: when the state of the input-delay system are available or when it is unavailable. Sufficient conditions which guarantee finite-time stability of a closed-loop input-delay system are given and the proof procedure is presented in a heuristic way by constructing appropriate comparison functions. The condition can be transformed into the intersection of two curves satisfying some constraints, which reveals the relationship between designed parameters clearly. Finally, simulation results are presented to validate the method proposed in this paper.

     

  • loading
  • [1]
    S. Xu and L. James, " A survey of linear matrix inequality techniques in stability analysis of delay systems,” Int. J. Syst. Sci., vol. 39, no. 12, pp. 1095–1113, 2008. doi: 10.1080/00207720802300370
    [2]
    B. Chen, S. Wang, and H. Lu, " Stabilization of time-delay systems containing saturating actuators,” Int. J. Control., vol. 47, no. 3, pp. 867–881, 1988. doi: 10.1080/00207178808906058
    [3]
    X. Wang and A. Saberi, " Stabilization of linear system with input saturation and unknown constant delays,” Autom., vol. 49, pp. 3632–3640, 2013. doi: 10.1016/j.automatica.2013.09.007
    [4]
    G. Song, T. Li, and K. Hu, " Observer-based quantized control of nonlinear systems with input saturation,” Non. Dyn., vol. 86, no. 2, pp. 1157–1169, 2016. doi: 10.1007/s11071-016-2954-3
    [5]
    X. Z. Lin, X. L. Li, and S. H. Li, " Finite-time stabilization of switched linear systems with nonlinear saturating actuators,” J. Franklin Inst., vol. 351, no. 3, pp. 1464–1482, 2014. doi: 10.1016/j.jfranklin.2013.11.013
    [6]
    Z. Lin and H. Fang, " On asymptotic stabilizability of linear systems with delayed input,” IEEE Trans. Autom. Control., vol. 52, no. 6, pp. 998–1013, 2007.
    [7]
    S. Tarbouriech and J. Silva, " Synthesis of controllers for continuous time delay systems with saturating controls via LMIs,” IEEE Trans. Autom. Control., vol. 45, no. 1, pp. 105–111, 2000. doi: 10.1109/9.827364
    [8]
    J. Shen and F. Kung, " Stabilization of input-delay systems with saturating actuator,” Int. J. Control., vol. 50, no. 5, pp. 1667–1680, 1989. doi: 10.1080/00207178908953458
    [9]
    B. Du, J. Lam, and S. Zhan, " Stabilization for state/input delay systems via static and integral output feedback,” Autom., vol. 46, no. 12, pp. 2000–2007, 2010. doi: 10.1016/j.automatica.2010.08.005
    [10]
    U. Hakki and A. Iftar, " Stable controller design for systems with multiple input/output time-delays,” Autom., vol. 48, no. 3, pp. 563–568, 2012. doi: 10.1016/j.automatica.2012.01.001
    [11]
    J. Cheng, S. Chen, and Z. Liu, " Robust finite-time sampled-data control of linear systems subject to random occurring delays and its application to Four-Tank system,” Appl. Math. Comput., vol. 281, pp. 55–76, 2016.
    [12]
    X. D. Zhao, H. J. Yang, and W. G. Xia, " Adaptive fuzzy hierarchical sliding mode control for a class of MIMO nonlinear time-delay systems with input saturation,” IEEE Trans. Fuzzy Syst., vol. 25, no. 5, pp. 1062–1077, 2016.
    [13]
    D. Rew, M. Tahk, and H. Cho, " Short-time stability of proportional navigation guidance loop,” IEEE Trans. Aerosp and Electron. Syst., vol. 32, no. 3, pp. 1107–1115, 1996.
    [14]
    F. Amato, M. Ariola, and P. Dorato, " Finite-time stabilization via dynamic output feedback,” Autom., vol. 42, pp. 337–342, 2006. doi: 10.1016/j.automatica.2005.09.007
    [15]
    P. Dorato. " Short time stability in linear time-varying systems,” in Proc. the IRE Int. Convention Record Part 4, pp. 83–87, 1961.
    [16]
    L. Weiss and F. Infante, " Finite time stability under perturbing forces and on product spaces,” IEEE Trans. Autom. Control., vol. 12, pp. 44–59, 1967.
    [17]
    H. D. D’Angelo, Linear Time-varying Systems: Analysis and Synthesis. Boston: Allyn and Bacon, MA, 1970.
    [18]
    X. Z. Lin, X. L. Li, and S. H. Li, " Finite-time boundedness for switched systems with sector bounded nonlinearity and constant time delay,” Appl. Math. Comput., vol. 274, pp. 25–40, 2016.
    [19]
    X. Z. Lin, S. H. Li, and Y. Zou, " Finite-time stabilization of switched linear time delay systems with saturating actuators,” Appl. Math. Comput., vol. 299, pp. 66–79, 2017.
    [20]
    L. V. Hien and D. T. Son, " Finite-time stability of a class of non-autonomous neural networks with heterogeneous proportional delays,” Appl. Math. Comput., vol. 251, no. 15, pp. 14–23, 2015.
    [21]
    X. J. Chen and J. Zhang, " Tiedong ma parameter estimation and topology identification of uncertain general fractional-order complex dynamical networks with time delay,” IEEE/CAA J. Autom. Sinica, vol. 3, no. 3, pp. 295–303, 2016. doi: 10.1109/JAS.2016.7508805
    [22]
    Z. Y. Nie, Q. G. Wang, R. J. Liu, and Y. H. Lan, " Identification and PID control for a class of delay Fractional-order systems,” IEEE/CAA J. Autom. Sinica, vol. 3, no. 4, pp. 463–476, 2016. doi: 10.1109/JAS.2016.7510103
    [23]
    D. Shi and T. Chen, " On finite-horizon L2-induced norms of discrete-time switched linear systems,” Autom., vol. 49, no. 8, pp. 2517–2524, 2013. doi: 10.1016/j.automatica.2013.04.042
    [24]
    F. Aamto and M. Ariola, " Finite-time control of discrete-time linear system,” IEEE Trans. Autom. Control, vol. 50, pp. 724–729, 2005. doi: 10.1109/TAC.2005.847042
    [25]
    W. Kang, S. Zhong, and K. Shi, " Finite-time stability for discrete-time system with time-varying delay and nonlinear perturbations,” ISA Trans., vol. 60, pp. 67–73, 2016. doi: 10.1016/j.isatra.2015.11.006
    [26]
    M. Chen, X. Yang, and H. Shen, " Finite-time asynchronous h control for Markov jump repeated scalar non-linear systems with input constraints,” Appl. Math. Comput., vol. 275, no. 15, pp. 172–180, 2016.
    [27]
    G. Wang, Z. Li, and Q. Zhang, " Robust finite-time stability and stabilization of uncertain Markovian jump systems with time-varying delay,” Appl. Math. Comput., vol. 293, no. 15, pp. 377–393, 2017.
    [28]
    S. Mobayen, " Finite-time stabilization of a class of chaotic systems with matched and unmatched uncertainties: an LMI approach,” Complexity, vol. 21, no. 5, pp. 14–19, 2014.
    [29]
    W. J. Gu, Y. G. Yu, and W. Hu, " Artificial bee colony algorithm-based parameter estimation of fractional-order chaotic system with time delay,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 1, pp. 107–113, 2017. doi: 10.1109/JAS.2017.7510340
    [30]
    X. Z. Lin, C. Chen, and C. J. Qian, " Smooth output feedback stabilization of a class of planar switched nonlinear systems under arbitrary switchings,” Autom., vol. 82, pp. 314–318, 2017. doi: 10.1016/j.automatica.2017.03.020
    [31]
    X. Z. Lin, H. B. Du, S. H. Li, and Y. Zou, " Finite-time stability and finitetime weighted L2-gain analysis for switched systems with time-varying delay,” IET Control Theory Applic., vol. 7, no. 7, pp. 1058–1069, 2013. doi: 10.1049/iet-cta.2012.0551
    [32]
    X. Z. Lin, X. L. Li, L. Chen, and S. H. Li, " Smooth output feedback stabilization for a class of high-order switched nonlinear systems,” Non. Analy.:Hybrid Sys., vol. 29, pp. 34–53, 2018. doi: 10.1016/j.nahs.2017.12.003
    [33]
    X. Y. Yu, X. J. F. Hong, J. Qi, L. L. Ou, and Y. L. He, " Research on the Loworder control strategy of the power system with time delay,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 501–508, 2018. doi: 10.1109/JAS.2017.7510835
    [34]
    Y. H. Sun, Y. X. Wang, Z. N. Wei, G. J. Sun, and X. P. Wu, " Robust H load frequency control of multi-area power system with time delay: a sliding mode control approach,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 610–617, 2018. doi: 10.1109/JAS.2017.7510649
    [35]
    H. L. Ren, G. D. Zong, and L. L. Hou, " Finite-time resilient decentralized control for interconnected impulsive switched systems with neutral delay,” ISA Trans., vol. 67, pp. 19–29, 2017. doi: 10.1016/j.isatra.2017.01.013
    [36]
    F. Amato, F. D. Tommasi, and A. Pironti, " Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems,” Autom., vol. 49, no. 8, pp. 2546–2550, 2013. doi: 10.1016/j.automatica.2013.04.004
    [37]
    J. F. Wang and C. F. Liu, " Stabilization of uncertain systems with Markovian modes of time delay and quantization density,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 463–470, 2018. doi: 10.1109/JAS.2017.7510823
    [38]
    L. Rosier, " Homogeneous Lyapunov function for homogeneous continuous vector field,” Sys. Contr. Lett., vol. 19, no. 4, pp. 467–473, 1992.
    [39]
    S. P. Bhat and D. S. Bernstein, " Finite-time stability of continuous autonomous systems,” SIAM J. Control Optim., vol. 38, no. 3, pp. 751–766, 2000. doi: 10.1137/S0363012997321358
    [40]
    Y. Orlov, " Finite time stability and robust control synthesis of uncertain switched systems,” SIAM J. Control and Optim, vol. 43, no. 4, pp. 1253–1271, 2005.
    [41]
    X. Z. Lin, S. T. Huang, S. H. Li, and Y. Zou. " Finite-time feedback control of an input-delay system with nonlinear saturating actuators”. Trans. Inst. Meas. Control, vol. 40, no. 10, doi: 014233121771383, Jul. 2017.
    [42]
    K. J. Astrom and B. Wittenmark. Computer-Controlled Systems: Theory and Design. Englewood Cliffs, NJ: Prentice-Hall, 1984.
    [43]
    T. Chen and B. A. Francis, " Input output stability of sampled-data systems,” IEEE Trans. Autom. Control, vol. 36, pp. 50–58, 1991. doi: 10.1109/9.62267
    [44]
    T. Chen and B. A. Francis. Optimal Sampled-data Control Systems. Springer London, 1995.
    [45]
    S. Hara, Y. Yamamoto, and H. Fujioka. " Modern and classical analysis/ synthesis methods in sampled-data control.” in Proc. the 35th Conf. Decision and Control, pp. 1251–1255, 1996.
    [46]
    L. Hu, J. Lam, Y. Cao, and H. Shao, " A linear matrix inequality approach to robust H2 sampled-data control for linear uncertain systems,” IEEE Trans. Sys.,Man. Cyber., vol. 33, pp. 149–155, 2003.
    [47]
    X. Z. Lin, S. T. Huang, and S. H. Li. " Finite-time feedback stabilization of an input-delay system via linear sampled-data control.” in Proc. of the 37th Chinese Control Conf., pp. 3059–3067, 2018.
    [48]
    B. Chen, S. Wang, and H. Lu, " Stabilization of time-delay systems containing saturating actuator,” Int. J. Control, vol. 47, no. 3, pp. 867–881, 1998.
    [49]
    F. Amato, M. Ariola, and P. Dorato, " Finite-time control of linear systems subject to parametric uncertainties and disturbances,” Autom., vol. 37, pp. 1459–1463, 2001. doi: 10.1016/S0005-1098(01)00087-5
    [50]
    F. Amato, M. Carbone, M. Ariola, and C. Cosentino. " Finite-time stability of discrete-time systems.” in Proc. of American Control Conf., pp. 1440–1444, 2004.
    [51]
    C. Desoer and M. Vidyasagar. Feedback Systems: Input-Output Properties. New York: Academic Press, 1975.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (1040) PDF downloads(50) Cited by()

    Highlights

    • With cases where the states of the input-delay system are available or not, a digital state feedback controller and digital observer-controller compensator are designed to finite-time stabilize the input-delay systems with saturating actuators. Sufficient conditions that guarantee the finite-time stability of closed-loop systems are derived.
    • Finite-time stabilization of input-delay systems is investigated in a heuristic way. But, to obtain the conditions and prove the conclusion, a constructive method is used to construct appropriate comparison functions, which is not a trivial task and one needs to fully consider the characteristics of the input-delay system. Moreover, comparison functions can give the upper bound estimation of the "damping ratio" of input-delay systems.
    • In order to reveal the relationship between the design parameters, the graphic method is considered to explain the conditions of the theorem. Complex conditions are transformed into the intersection of two curves satisfying some constraints.

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return