A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 7 Issue 1
Jan.  2020

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 6.171, Top 11% (SCI Q1)
    CiteScore: 11.2, Top 5% (Q1)
    Google Scholar h5-index: 51, TOP 8
Turn off MathJax
Article Contents
Surender Hans and Felix Orlando Maria Joseph, "Robust Control of a Bevel-Tip Needle for Medical Interventional Procedures," IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 244-256, Jan. 2020. doi: 10.1109/JAS.2019.1911660
Citation: Surender Hans and Felix Orlando Maria Joseph, "Robust Control of a Bevel-Tip Needle for Medical Interventional Procedures," IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 244-256, Jan. 2020. doi: 10.1109/JAS.2019.1911660

Robust Control of a Bevel-Tip Needle for Medical Interventional Procedures

doi: 10.1109/JAS.2019.1911660
Funds:  This work was supported by the Science and Engineering Research Board (SERB) India (ECR/2017/001035)
More Information
  • In minimally invasive surgery, one of the main objectives is to ensure safety and target reaching accuracy during needle steering inside the target organ. In this research work, the needle steering approach is determined using a robust control algorithm namely the integral sliding mode control (ISMC) strategy to eliminate the chattering problem associated with the general clinical scenario. In general, the discontinuity component of feedback control input is not appropriate for the needle steering methodology due to the practical limitations of the driving actuators. Thus in ISMC, we have incorporated the replacement of the discontinuous component using a super twisting control (STC) input due to its unique features of chattering elimination and disturbance observation characteristics. In our study, the kinematic model of an asymmetric flexible bevel-tip needle in a soft-tissue phantom is used to evaluate stability analysis. A comparative study based on the analysis of chattering elimination is executed to determine the performance of the proposed control strategy in real-time needle steering with conventional sliding mode control using vision feedback through simulation and experimental results. This validates the efficacy of the proposed control strategy for clinical needle steering.

     

  • loading
  • [1]
    S. Nath, Z. Chen, N. Yue, S. Trumpore, and R. Peschel, " Dosimetric effects of needle divergence in prostate seed implant using 125I and 103Pd radioactive seeds,” Med. Phys, vol. 27, pp. 1058–1066, May 2000. doi: 10.1118/1.598971
    [2]
    J. H. Youk, E. K. Kim, M. J. Kim, J. Y. Lee, and K. K. Oh, " Missed breast cancers at US-guided core needle biopsy: how to reduce them,” Radiographics, vol. 27, pp. 79–94, 2007. doi: 10.1148/rg.271065029
    [3]
    R. H. Taylor and D. Stoianovici, " Medical robotics in computer-integrated surgery,” IEEE Trans. Robot. Autom., vol. 19, no. 5, pp. 765–781, Oct. 2003. doi: 10.1109/TRA.2003.817058
    [4]
    A. Levant, " Sliding order and sliding accuracy in sliding mode control,” Int. J. Control, vol. 58, pp. 1247–1263, 1993. doi: 10.1080/00207179308923053
    [5]
    A. Moreno and M. Osorio, " Strict Lyapunov functions for the super- twisting algorithm,” IEEE Trans. Automatic Control, vol. 57, no. 4, pp. 1035–1040, April. 2012. doi: 10.1109/TAC.2012.2186179
    [6]
    S. P. DiMaio and S. E. Salcudean, " Needle insertion modeling and simulation,” IEEE Trans. Robot. Autom., vol. 19, no. 5, pp. 864–875, Oct. 2003. doi: 10.1109/TRA.2003.817044
    [7]
    Glozman and M. Shoham, " Image-guided robotic flexible needle steering,” IEEE Trans. Robotic, vol. 23, no. 3, pp. 459–467, June. 2007. doi: 10.1109/TRO.2007.898972
    [8]
    K. B. Reed, A. Majewicz, V. Kallem, R. Alterovitz, K. Goldberg, N. J. Cowan, and A. M. Okamura, " Robot-assisted needle steering,” IEEE Robot. Autom. Mag., vol. 18, no. 4, pp. 3546, Dec. 2011.
    [9]
    K. B. Reed, V. Kallem, R. Alterovitz, K. Goldberg, A. M. Okamura, and N. J. Cowan, " Integrated planning and image-guided control for planar needle-steering,” in Proc. IEEE Conf. Biorob., pp. 819–824, 2008.
    [10]
    V. Duindam, R. Alterovitz, S. Sastry, and K. Goldberg, " Screw-based motion planning for bevel-tip flexible needles in 3D environments with obstacles, ” in Proc. IEEE Int. Conf. Robot. Autom., Pasedina, CA, May 2008, pp. 2483-2488.
    [11]
    D. S. Minhas, J. A. Engh, M. M. Fenske, and C. N. Riviere, " Modeling of needle steering via duty-cycled spinning,” in Proc. IEEE Conf. EMBS, pp. 2756–2759, 2007.
    [12]
    A. Majewicz, J. J. Siegel, A. A. Stanley, and A. M. Okamura, " Design and evaluation of duty-cycling steering algorithms for robotically-driven steerable needles,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pp. 5883–5888, 2014.
    [13]
    V. Kallem and N. J. Cowan, " Image guidance of flexible tip-steerable needles,” IEEE Trans. Robot., vol. 25, no. 1, pp. 191–196, 2009. doi: 10.1109/TRO.2008.2010357
    [14]
    D. C. Rucker, J. Das, H. B. Gilbert, P. J. Swaney, M. I. Miga, N. Sarkar, and R. J. Webster Ⅲ, " Sliding mode control of steerable needles,” IEEE Trans. Robot., vol. 29, no. 5, pp. 1289–1299, Oct. 2013. doi: 10.1109/TRO.2013.2271098
    [15]
    B. Fallahi, C. Rossa, R. S. Sloboda, N. Usmani, M. Tavakoli, " Sliding-based switching control for image-guided needle steering in soft tissue,” IEEE Robot. Autom. Lett., vol. 1, no. 2, pp. 860–867, Jul. 2016. doi: 10.1109/LRA.2016.2528293
    [16]
    B. Fallahi, C. Rossa, R. S. Sloboda, N. Usmani, and M. Tavakoli, " Sliding based image-guided 3D needle steering in soft tissue,” Control Eng. Pract., vol. 63, pp. 34–43, 2017. doi: 10.1016/j.conengprac.2017.04.001
    [17]
    D. Y. Sze, " Use of curved needles to perform biopsies and drainages of inaccessible targets,” Vasc. Interventional Radiol., vol. 12, pp. 1441–1444, 2001. doi: 10.1016/S1051-0443(07)61706-0
    [18]
    S. Okazawa, R. Ebrahimi, J. Chuang, S. E. Salcudean, and R. Rohling, " Hand-held steerable needle device,” IEEE/ASME Trans. Mechatron., vol. 10, no. 3, pp. 285–296, Jun. 2005. doi: 10.1109/TMECH.2005.848300
    [19]
    R. J. Webster Ⅲ, J. Memisevic, and A. M. Okamura, " Design considerations for robotic needle steering,” in Proc. IEEE Int. Conf. Robot. Autom., pp. 3588–3594, 2005.
    [20]
    S. P. Dimaio, G. S. Fischer, S. J. Maker, N. Hata, I. Iordachita, C. M. Tempany, R. Kikinis, and G. Fichtinger, " A system for MRI-guided prostate interventions,” in Proc. 1st IEEE/RAS-EMBS Int. Conf. Biomed. Robot. Biomech. (BioRob), pp. 68–73, 2006.
    [21]
    J. Engh, G. Podnar, S. Khoo, and C. Riviere, " Flexible needle steering system for percutaneous access to deep zones of the brain,” in Proc. IEEE Conf. Northeast Bioeng., pp. 103–104, Apr. 2006.
    [22]
    S. Okazawa, R. Ebrahimi, J. Chuang, R. Rohling, and S. Salcudean, " Methods for segmenting curved needles in ultrasound images,” Med. Image Anal., vol. 10, pp. 330–342, 2006. doi: 10.1016/j.media.2006.01.002
    [23]
    D. Glozman and M. Shoham, " Flexible needle steering and optimal trajectory planning for percutaneous therapies,” in Proc. Med. Image Comput.-Assisted Intervention, pp. 137–144, 2004.
    [24]
    R. J. Webster, Ⅲ, J. S. Kim, N. J. Cowan, G. S. Chirikjian, and A. M. Okamura, " Nonholonomic modeling of needle steering,” Int. J. Robot. Res, vol. 25, no. 5/6, pp. 509–526, May/Jun. 2006.
    [25]
    W. Park, J. S. Kim, Y. Z. Cowan, A. M. Okamura, and G. S. Chirikjian, " Diffusion-based motion planning for a nonholonomic flexible needle model, ” in Proc. IEEE Int. Conf. Robot. Autom., Barcelona, Spain, Apr. 2005, pp. 4611-4616.
    [26]
    S. P. DiMaio and S. E. Salcudean, " Needle steering and model-based trajectory planning,” in Proc. Medical Image Computing and Computer Aided Intervention (MICCAI), pp. 33–40, 2003.
    [27]
    R. Alterovitz, A. Lim, K. Goldberg, G. S. Chirikjian, and A. M. Okamura, " Steering flexible needles under Markov motion uncertainty,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst, pp. 1570–1575, Aug. 2005.
    [28]
    R. Alterovitz, K. Goldberg, and A. Okamura, " Planning for steerable bevel-tip needle insertion through 2D soft tissue with obstacles,” in Proc. IEEE Int. Conf. Robot. Autom., pp. 1652–1657, 2005.
    [29]
    R. Alterovitz, M. Branicky, and K. Goldberg, " Motion planning under uncertainty for image-guided medical needle steering,” Int. J. Robot. Res., vol. 27, no. 1112, pp. 1361–1374, Nov. 2008.
    [30]
    N. Abolhassani, R. Patel, and M. Moallem, " Needle insertion into soft tissue: a survey,” Med. Eng. Phys., vol. 29, pp. 413–431, 2007. doi: 10.1016/j.medengphy.2006.07.003
    [31]
    H. K. Khalil, Nonlinear Systems, 2nd ed. Englewood Cliffs, NJ: Prentice- Hall, 2002.
    [32]
    V. Utkin, J. Guldner, and J. X. Shi, Sliding Mode Control in Electromechanical Systems. London, U.K.: Taylor & Francis, 1999.
    [33]
    C. Edwards and S. K. Spurgeron, Sliding Mode Control: Theory and Applications. London, U.K.: Taylor & Francis, 1998.
    [34]
    A. Levant, " Robust exact differentiation via sliding mode technique,” Automatica, vol. 34, pp. 379–384, 1998. doi: 10.1016/S0005-1098(97)00209-4
    [35]
    S. P. Bhat and D. S. Bernstein, " Geometric homogeneity with applications to finite-time stability,” Math. Control Signals Syst., vol. 17, no. 2, pp. 101–127, 2005. doi: 10.1007/s00498-005-0151-x
    [36]
    S. Kamal, A. Raman, and B. Bandyopadhyay, " Finite time stabilization of fractional order uncertain chain of integrator: an Integral sliding mode approach,” IEEE Trans. Autom. Control, vol. 58, no. 6, pp. 1597–1602, Jun. 2013. doi: 10.1109/TAC.2012.2228051
    [37]
    A. Levant and L. Alelishvili, " Integral high-order sliding modes,” IEEE Trans. Autom. Control, vol. 52, no. 7, pp. 1278–1282, Jul. 2007. doi: 10.1109/TAC.2007.900830

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(1)

    Article Metrics

    Article views (1760) PDF downloads(69) Cited by()

    Highlights

    • Core Finding: A robust control strategy is proposed for percutaneous cancerous interventions to execute chattering free maneuverability of the flexible needle in-spite of matched disturbances.
    • Essence of the research: In minimal invasive surgery, it is a major requirement for safety and precise target reaching which is addressed successfully in this paper.
    • Distinction of the paper: With Integral Sliding Mode Control (ISMC), we have incorporated the replacement of the discontinuous part by Super Twisting Control (STC) input due to its unique feature of chattering elimination and disturbance observation characteristics.

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return