IEEE/CAA Journal of Automatica Sinica
Citation:  QiuYan He, YiFei Pu, Bo Yu and Xiao Yuan, "ArbitraryOrder Fractance Approximation Circuits With High OrderStability Characteristic and Wider Approximation Frequency Bandwidth," IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 14251436, Sept. 2020. doi: 10.1109/JAS.2020.1003009 
[1] 
Y. Su and Y. Wang, “Parameter estimation for fractional diffusion process with discrete observations,” J. Function Spaces, 2019. doi: 10.1155/2019/9036285

[2] 
W. Hamrouni and A. Abdennadher, “Random walk’s models for fractional diffusion equation,” Discrete and Continuous Dynamical Systems  Series B, vol. 21, no. 8, pp. 2509–2530, 2017.

[3] 
G. C. Wu, D. Baleanu, Z. G. Deng, and S. D. Zeng, “Lattice fractional diffusion equation in terms of a rieszcaputo difference,” Physica A Statistical Mechanics and Its Applications, vol. 438, pp. 335–339, 2015. doi: 10.1016/j.physa.2015.06.024

[4] 
G. Karamali, M. Dehghan, and M. Abbaszadeh, “Numerical solution of a timefractional PDE in the electroanalytical chemistry by a local meshless method,” Engineering with Computers, vol. 35, no. 1, pp. 87–100, 2019. doi: 10.1007/s0036601805857

[5] 
K. B. Oldham, “Interrelation of current and concentration at electrodes,” J. Applied Electrochemistry, vol. 21, no. 12, pp. 1068–1072, 1991. doi: 10.1007/BF01041448

[6] 
C. Wu and W. Rui, “Method of separation variables combined with homogenous balanced principle for searching exact solutions of nonlinear timefractional biological population model,” Communications in Nonlinear Science and Numerical Simulation, vol. 63, pp. 88–100, 2018. doi: 10.1016/j.cnsns.2018.03.009

[7] 
D. Craiem and R. L. Magin, “Fractional order models of viscoelasticity as an alternative in the analysis of red blood cell (RBC) membrane mechanics,” Physical Biology, vol. 7, no. 1, pp. 13001, 2010. doi: 10.1088/14783975/7/1/013001

[8] 
C. IzaguirreEspinosa, A.J. MuñozVázquez, A. SánchezOrta, V. ParraVega, and I. Fantoni, “Fractionalorder control for robust position/yaw tracking of quadrotors with experiments,” IEEE Trans. Control Systems Technology, vol. 27, no. 4, pp. 1645–1650, 2019. doi: 10.1109/TCST.2018.2831175

[9] 
M. Shahvali, M.B. NaghibiSistani, and H. Modares, “Distributed consensus control for a network of incommensurate fractionalorder systems,” IEEE Control Systems Letters, vol. 3, no. 2, pp. 481–486, 2019. doi: 10.1109/LCSYS.2019.2903227

[10] 
A. Chevalier, C. Francis, C. Copot, C. M. Ionescu, and R. De Keyser, “Fractionalorder PID design: Towards trans. from stateofart to stateofuse,” ISA Trans., vol. 84, pp. 178–186, 2019. doi: 10.1016/j.isatra.2018.09.017

[11] 
R. De Keyser, C. I. Muresan, and C. M. Ionescu, “An efficient algorithm for loworder direct discretetime implementation of fractional order transfer functions,” ISA Trans., vol. 74, pp. 229–238, 2018. doi: 10.1016/j.isatra.2018.01.026

[12] 
R. De Keyser, C. I. Muresan, and C. M. Ionescu, “A novel autotuning method for fractional order PI/PD controllers,” ISA Trans., vol. 62, pp. 268–275, 2016. doi: 10.1016/j.isatra.2016.01.021

[13] 
R. D. Keyser and C. I. Muresan, “Analysis of a new continuoustodiscretetime operator for the approximation of fractional order systems,” in Proc. IEEE Int. Conf. Systems, Man, and Cybernetics, 2016, pp. 3211–3216.

[14] 
L. Liu, S. Tian, D. Xue, T. Zhang, and Y. Chen, “Continuous fractionalorder zero phase error tracking control,” ISA Trans., vol. 75, pp. 226–235, 2018. doi: 10.1016/j.isatra.2018.01.025

[15] 
W. Zheng, Y. Luo, X. Wang, Y. Pi, and Y. Chen, “Fractional order PI^{λ}D^{μ} controller design for satisfying time and frequency domain specifications simultaneously,” ISA Trans., vol. 68, pp. 212–222, 2017. doi: 10.1016/j.isatra.2017.02.016

[16] 
A. Tepljakov, E. A. Gonzalez, E. Petlenkov, J. Belikov, C. A. Monje, and I. Petráš, “Incorporation of fractionalorder dynamics into an existing PI/PID DC motor control loop,” ISA Trans., vol. 60, pp. 262–273, 2016. doi: 10.1016/j.isatra.2015.11.012

[17] 
I. Dimeas, I. Petráš, and C. Psychalinos, “New analog implementation technique for fractionalorder controller: a DC motor control,” AEÜ Int. J. Electronics and Communications, vol. 78, pp. 192–200, 2017. doi: 10.1016/j.aeue.2017.03.010

[18] 
A. Oustaloup, F. Levron, B. Mathieu, and F. M. Nanot, “Frequencyband complex noninteger differentiator: Characterization and synthesis,” IEEE Trans. Circuits and Systems I:Fundamental Theory and Applications, vol. 47, no. 1, pp. 25–39, 2000. doi: 10.1109/81.817385

[19] 
Y. Luo and Y. Chen, “Fractional order [proportional derivative] controller for a class of fractional order systems,” Automatica, vol. 45, no. 10, pp. 2446–2450, 2009. doi: 10.1016/j.automatica.2009.06.022

[20] 
G. Fedele, “A fractionalorder repetitive controller for periodic disturbance rejection,” IEEE Trans. Automatic Control, vol. 63, no. 5, pp. 1426–1433, 2018. doi: 10.1109/TAC.2017.2748346

[21] 
O. Atan, “Implementation and simulation of fractional order chaotic circuits with timedelay,” Analog Integrated Circuits and Signal Processing, vol. 96, no. 3, pp. 485–494, 2018. doi: 10.1007/s1047001811892

[22] 
T. C. Lin and T. Y. Lee, “Chaos synchronization of uncertain fractionalorder chaotic systems with time delay based on adaptive fuzzy sliding mode control,” IEEE Trans. Fuzzy Systems, vol. 19, no. 4, pp. 623–635, 2011. doi: 10.1109/TFUZZ.2011.2127482

[23] 
G. M. Mahmoud, T. M. AbedElhameed, and M. E. Ahmed, “Generalization of combinationcombination synchronization of chaotic ndimensional fractionalorder dynamical systems,” Nonlinear Dynamics, vol. 83, no. 4, pp. 1885–1893, 2016. doi: 10.1007/s110710152453y

[24] 
H. Zhu, S. Zhou, and J. Zhang, “Chaos and synchronization of the fractionalorder Chuas system,” Chaos Solitons and Fractals, vol. 26, no. 03, pp. 1595–1603, 2016.

[25] 
S. Yang, J. Yu, C. Hu, and H. Jiang, “Quasiprojective synchronization of fractionalorder complexvalued recurrent neural networks,” Neural Networks, vol. 104, pp. 104–113, 2018. doi: 10.1016/j.neunet.2018.04.007

[26] 
G. Velmurugan and R. Rakkiyappan, “Hybrid projective synchronization of fractionalorder memristorbased neural networks with time delays,” Nonlinear Dynamics, vol. 11, no. 3, pp. 1–14, 2015.

[27] 
H. B. Bao and J. D. Cao, “Projective synchronization of fractionalorder memristorbased neural networks,” Neural Networks the Official J. Int. Neural Network Society, vol. 63, pp. 1, 2015. doi: 10.1016/j.neunet.2014.10.007

[28] 
R. Rakkiyappan, J. Cao, and G. Velmurugan, “Existence and uniform stability analysis of fractionalorder complexvalued neural networks with time delays,” IEEE Trans. Neural Networks and Learning Systems, vol. 26, no. 1, pp. 84–97, 2015. doi: 10.1109/TNNLS.2014.2311099

[29] 
Y. F. Pu, Z. Yi, and J. L. Zhou, “Fractional Hopfield neural networks: Fractional dynamic associative recurrent neural networks,” IEEE Trans. Neural Networks and Learning Systems, vol. 28, no. 10, pp. 2319–2333, 2017. doi: 10.1109/TNNLS.2016.2582512

[30] 
Y. F. Pu, “Analog circuit realization of arbitraryorder fractional Hopfield neural networks: A novel application of fractor to defense against chip cloning attacks,” IEEE Access, vol. 4, no. 99, pp. 5417–5435, 2016.

[31] 
G. S. Liang, Y. M. Jing, C. Liu, and L. Ma, “Passive synthesis of a class of fractional immittance function based on multivariable theory,” J. Circuits,Systems and Computers, vol. 27, no. 5, 2018. doi: 10.1142/S0218126618500743

[32] 
A. Adhikary, S. Sen, and K. Biswas, “Practical realization of tunable fractional order parallel resonator and fractional order filters,” IEEE Trans. Circuits and Systems I:Regular Papers, vol. 63, no. 8, pp. 1142–1151, 2016. doi: 10.1109/TCSI.2016.2568262

[33] 
S. L. Wu and M. AlKhaleel, “Parameter optimization in waveform relaxation for fractionalorder RC circuits,” IEEE Trans. Circuits and Systems I:Regular Papers, vol. 64, no. 7, pp. 1781–1790, 2017. doi: 10.1109/TCSI.2017.2682119

[34] 
M. S. Sarafraz and M. S. Tavazoei, “Passive realization of fractionalorder impedances by a fractional element and RLC components: Conditions and procedure,” IEEE Trans. Circuits and Systems I Regular Papers, vol. 64, no. 3, pp. 585–595, 2017. doi: 10.1109/TCSI.2016.2614249

[35] 
X. Yuan, Mathematical Principles of Fractance Approximation Circuits, Science Press, Beijing, 2015.

[36] 
B. Yu, Q. Y. He, and X. Yuan, “Scaling fractallattice franctance approximation circuits of arbitrary order and irregular lattice type scaling equation,” Acta Physica Sinica, vol. 67, no. 7, 2018.

[37] 
Y. F. Pu, X. Yuan, and B. Yu, “Analog circuit implementation of fractionalorder memristor: Arbitraryorder lattice scaling fracmemristor,” IEEE Trans. Circuits and Systems I:Regular Papers, vol. 65, no. 9, pp. 2903–2916, 2018. doi: 10.1109/TCSI.2018.2789907

[38] 
A. Charef, “Analogue realisation of fractionalorder integrator, differentiator and fractional PI^{λ}D^{μ} controller,” IEE ProceedingsControl Theory and Applications, vol. 153, no. 6, pp. 714–720, 2006. doi: 10.1049/ipcta:20050019

[39] 
A. Adhikary, P. Sen, S. Sen, and K. Biswas, “Design and performance study of dynamic fractors in any of the four quadrants,” Circuits Systems and Signal Processing, vol. 35, no. 6, pp. 1909–1932, 2016. doi: 10.1007/s0003401502133

[40] 
Q. Y. He, Y. F. Pu, B. Yu, and X. Yuan, “Scaling fractalchuan fractance approximation circuits of arbitrary order,” Circuits,Systems,and Signal Processing, vol. 38, no. 11, pp. 4933–4958, 2019.

[41] 
A. Oustaloup, O. Cois, P. Lanusse, P. Melchior, X. Moreau, and J. Sabatier, “The crone aproach: Theoretical developments and major applications,” IFAC Proceedings Volumes, vol. 39, no. 11, pp. 324–354, 2006. doi: 10.3182/200607193PT4902.00059

[42] 
G. Carlson and C. Halijak, “Approximation of fractional capacitors (1/s)^{1/n} by a regular newton process,” IEEE Trans. Circuit Theory, vol. 11, no. 2, pp. 210–213, 1964. doi: 10.1109/TCT.1964.1082270

[43] 
Q. Y. He and X. Yuan, “Carlson iteration and rational approximations of arbitrary order fractional calculus operator,” Acta Physica Sinica, vol. 65, no. 16, pp. 25–34, 2016.

[44] 
Q. Y. He, B. Yu, and X. Yuan, “Carlson iterating rational approximation and performance analysis of fractional operator with arbitrary order,” Chin. Phys. B, vol. 26, no. 4, pp. 66–74, 2017.

[45] 
K. Biswas, S. Sen, and P. K. Dutta, “Realization of a constant phase element and its performance study in a differentiator circuit,” IEEE Trans. Circuits and Systems II:Express Briefs, vol. 53, no. 9, pp. 802–806, 2006. doi: 10.1109/TCSII.2006.879102

[46] 
D. Mondal and K. Biswas, “Performance study of fractional order integrator using singlecomponent fractional order element,” IET Circuits Devices and Systems, vol. 5, no. 4, pp. 334–342, 2011. doi: 10.1049/ietcds.2010.0366

[47] 
B. Yu, Q. Y. He, X. Yuan, and L. X. Yang, “Approximation performance analyses and applications of F characteristics in fractance approximation circuit,” J. Sichuan University (Natural Science Edition)

[48] 
P. P. Liu, X. Yuan, L. Tao, and Z. Yi, “Operational characteristics and approximation performance analysis of oustaloup fractance circuits,” J. Sichuan University (Natural Science Edition)

[49] 
P. P. Liu and X. Yuan, “Approximation performance analysis of Oustaloup rational approximation of ideal fractance,” J. Sichuan University (Engineering Science Edition)
