IEEE/CAA Journal of Automatica Sinica
Citation:  Ameer Hamza Khan, Xinwei Cao, Shuai Li, Vasilios N. Katsikis and Liefa Liao, "BASADAM: An ADAM Based Approach to Improve the Performance of Beetle Antennae Search Optimizer," IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 461471, Mar. 2020. doi: 10.1109/JAS.2020.1003048 
[1] 
H. Q. Wang, P. X. Liu, X. J. Xie, X. P. Liu, T. Hayat, and F. E. Alsaadi, “Adaptive fuzzy asymptotical tracking control of nonlinear systems with unmodeled dynamics and quantized actuator,” Inf. Sci., DOI: 10.1016/j.ins.2018.04.011

[2] 
C. G. Yang, J. Luo, C. Liu, M. Li, and S. L. Dai, “Haptics electromyography perception and learning enhanced intelligence for teleoperated robot,” IEEE Trans. Autom. Sci. Eng., vol. 16, no. 4, pp. 1512–1521, Oct. 2019. doi: 10.1109/TASE.2018.2874454

[3] 
X. Luo, H. Wu, H. Q. Yuan, and M. C. Zhou, “Temporal patternaware QoS prediction via biased nonnegative latent factorization of tensors,” IEEE Trans. Cybern., DOI: 10.1109/TCYB.2019.2903736

[4] 
L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for largescale machine learning,” SIAM Rev., vol. 60, no. 2, pp. 223–311, May 2018. doi: 10.1137/16M1080173

[5] 
S. Theodoridis, Machine Learning: A Bayesian and Optimization Perspective. San Diego: Academic Press, 2015.

[6] 
T. Liu, B. Tian, Y. F. Ai, L. Li, D. P. Cao, and F. Y. Wang, “Parallel reinforcement learning: a framework and case study,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 4, pp. 827–835, Jul. 2018. doi: 10.1109/JAS.2018.7511144

[7] 
H. Q. Wang, S. W. Liu, and X. B. Yang, “Adaptive neural control for nonstrictfeedback nonlinear systems with input delay,” Inf. Sci., vol. 514, pp. 605–616, Apr. 2020. doi: 10.1016/j.ins.2019.09.043

[8] 
X. Luo, Z. G. Liu, S. Li, M. S. Shang, and Z. D. Wang, “A fast nonnegative latent factor model based on generalized momentum method,” IEEE Trans. Syst., Man, Cybern.: Syst., DOI: 10.1109/TSMC.2018.2875452

[9] 
D. P. Kingma and J. Ba, “Adam: a method for stochastic optimization,” arXiv: 1412.6980, 2014.

[10] 
S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv: 1609.04747, 2016.

[11] 
Y. Shi and Y. N. Zhang, “Solving future equation systems using integraltype error function and using twice ZNN formula with disturbances suppressed,” J. Franklin Ins., vol. 356, no. 4, pp. 2130–2152, Mar. 2019. doi: 10.1016/j.jfranklin.2018.11.026

[12] 
L. Xiao, S. Li, F. J. Lin, Z. G. Tan, and A. H. Khan, “Zeroing neural dynamics for control design: comprehensive analysis on stability, robustness, and convergence speed,” IEEE Trans. Ind. Informatics, vol. 15, no. 5, pp. 2605–2616, May 2019. doi: 10.1109/TII.2018.2867169

[13] 
Y. N. Zhang, Z. Y. Qi, B. B. Qiu, M. Yang, and M. L. Xiao, “Zeroing neural dynamics and models for various timevarying problems solving with ZLSF models as minimizationtype and Eulertype special cases[research frontier],” IEEE Comput. Intell. Mag., vol. 14, no. 3, pp. 52–60, Aug. 2019. doi: 10.1109/MCI.2019.2919397

[14] 
Y. N. Zhang, Z. Y. Qi, M. Yang, J. J. Guo, and H. C. Huang, “Stepwidth theoretics and numerics of fourpoint general DTZN model for future minimization using jury stability criterion,” Neurocomputing, vol. 357, pp. 231–239, Sept. 2019. doi: 10.1016/j.neucom.2019.04.054

[15] 
R. Johnson and T. Zhang, “Accelerating stochastic gradient descent using predictive variance reduction,” in Proc. 26th Int. Conf. Neural Information Processing Systems, Red Hook, USA, 2013, pp. 315–323.

[16] 
X. Luo, D. X. Wang, M. C. Zhou, and H. Q. Yuan, "Latent factorbased recommenders relying on extended stochastic gradient descent algorithms," IEEE Trans. Syst., Man, Cybern.: Syst., DOI: 10.1109/TSMC.2018.2884191

[17] 
J. D. Lee, M. Simchowitz, M. I. Jordan, and B. Recht, “Gradient descent only converges to minimizers,” in Proc. 29th Annu. Conf. Learning Theory, 2016, pp. 1246–1257.

[18] 
W. N. Chen, J. Zhang, H. S. H. Chung, W. L. Zhong, W. G. Wu, and Y. H. Shi, “A novel setbased particle swarm optimization method for discrete optimization problems,” IEEE Trans. Evol. Comput., vol. 14, no. 2, pp. 278–300, Apr. 2010. doi: 10.1109/TEVC.2009.2030331

[19] 
S. Ling, H. Q. Wang, and P. X. Liu, “Adaptive fuzzy dynamic surface control of flexiblejoint robot systems with input saturation,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 97–107, Jan. 2019. doi: 10.1109/JAS.2019.1911330

[20] 
H. NguyenXuan, G. Liu, C. a. ThaiHoang, and T. NguyenThoi, “An edgebased smoothed finite element method (ESFEM) with stabilized discrete shear gap technique for analysis of reissnermindlin plates,” Computer Methods in Applied Mechanics and Engineering, vol. 199, no. 9–12, pp. 471–489, Jan. 2010. doi: 10.1016/j.cma.2009.09.001

[21] 
A. H. Khan, S. Li, and X. Luo, “Obstacle avoidance and tracking control of redundant robotic manipulator: an RNN based metaheuristic approach,” IEEE Trans. Ind. Informatics, DOI: 10.1109/TII.2019.2941916

[22] 
Y. Zhou, L. J. Kong, Z. Y. Wu, S. P. Liu, Y. Q. Cai, and Y. Liu, “Ensemble of multiobjective metaheuristic algorithms for multiobjective unconstrained binary quadratic programming problem,” Appl. Soft Comput., vol. 81, pp. 105485, Aug. 2019. doi: 10.1016/j.asoc.2019.105485

[23] 
J. A. Parejo, A. RuizCortes, S. Lozano, and P. Fernandez, “Metaheuristic optimization frameworks: a survey and benchmarking,” Soft Comput., vol. 16, no. 3, pp. 527–561, Mar. 2012. doi: 10.1007/s0050001107548

[24] 
C. Blum, A. Roli, and M. Sampels, Hybrid Metaheuristics: An Emerging Approach to Optimization. Heidelberg, Germany: Springer, 2008.

[25] 
H. Q. Wang, P. X. Liu, X. D. Zhao, and X. P. Liu, “Adaptive fuzzy finitetime control of nonlinear systems with actuator faults,” IEEE Trans. Cybern., DOI: 10.1109/TCYB.2019.2902868

[26] 
O. Roeva and T. Slavov, “Pid controller tuning based on metaheuristic algorithms for bioprocess control,” Biotechnol. Biotechnol. Equip., vol. 26, no. 5, pp. 3267–3277, Apr. 2012. doi: 10.5504/BBEQ.2012.0065

[27] 
A. Song, W. N. Chen, T. L. Gu, H. Q. Yuan, S. Kwong, and J. Zhang, “Distributed virtual network embedding system with historical archives and setbased particle swarm optimization,” IEEE Trans. Syst., Man, Cybern.: Syst., DOI: 10.1109/TSMC.2018.2884523

[28] 
C. G. Yang, G. Z. Peng, Y. N. Li, R. X. Cui, L. Cheng, and Z. J. Li, “Neural networks enhanced adaptive admittance control of optimized robotenvironment interaction,” IEEE Trans. Cybern., vol. 49, no. 7, pp. 2568–2579, Jul. 2019. doi: 10.1109/TCYB.2018.2828654

[29] 
L. Cheng, W. C. Liu, C. G. Yang, T. W. Huang, Z. G. Hou, and M. Tan, “A neuralnetworkbased controller for piezoelectricactuated stickslip devices,” IEEE Trans. Ind. Electron., vol. 65, no. 3, pp. 2598–2607, Mar. 2018. doi: 10.1109/TIE.2017.2740826

[30] 
H. Y. Liu, L. Cheng, M. Tan, and Z. G. Hou, “Containment control of general linear multiagent systems with multiple dynamic leaders: a fast sliding mode based approach,” IEEE/CAA J. Autom. Sinica, vol. 1, no. 2, pp. 134–140, Apr. 2014. doi: 10.1109/JAS.2014.7004542

[31] 
H. Y. Liu, M. C. Zhou, and Q. Liu, “An embedded feature selection method for imbalanced data classification,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 3, pp. 703–715, May 2019. doi: 10.1109/JAS.2019.1911447

[32] 
X. Luo, Z. D. Wang, and M. S. Shang, “An instancefrequencyweighted regularization scheme for nonnegative latent factor analysis on highdimensional and sparse data,” IEEE Trans. Syst., Man, Cybern.: Syst., DOI: 10.1109/TSMC.2019.2930525

[33] 
X. S. Yang, NatureInspired Metaheuristic Algorithms, Beckington, UK: Luniver Press, 2008.

[34] 
J. Krause, J. Cordeiro, R. S. Parpinelli, and H. S. Lopes, “A survey of swarm algorithms applied to discrete optimization problems,” in Swarm Intelligence and BioInspired Computation, X. S. Yang, Z. H. Cui, R. B. Xiao, A. H. Gandomi, and M. Karamanoglu, Eds. London, UK: Elsevier, 2013, pp. 169–191.

[35] 
H. Shayanfar and F. S. Gharehchopogh, “Farmland fertility: a new metaheuristic algorithm for solving continuous optimization problems,” Appl. Soft Comput., vol. 71, pp. 728–746, Oct. 2018. doi: 10.1016/j.asoc.2018.07.033

[36] 
E. Wari and W. H. Zhu, “A survey on metaheuristics for optimization in food manufacturing industry,” Appl. Soft Comput., vol. 46, pp. 328–343, Sep. 2016. doi: 10.1016/j.asoc.2016.04.034

[37] 
X. Luo, M. C. Zhou, S. Li, Z. H. You, Y. N. Xia, and Q. S. Zhu, “A nonnegative latent factor model for largescale sparse matrices in recommender systems via alternating direction method,” IEEE Trans. Neural Networks Learn. Syst., vol. 27, no. 3, pp. 579–592, Mar. 2016. doi: 10.1109/TNNLS.2015.2415257

[38] 
X. Luo, M. C. Zhou, Y. N. Xia, and Q. S. Zhu, “An efficient nonnegative matrixfactorizationbased approach to collaborative filtering for recommender systems,” IEEE Trans. Ind. Informatics, vol. 10, no. 2, pp. 1273–1284, May 2014. doi: 10.1109/TII.2014.2308433

[39] 
J. Q. Li, H. Y. Sang, Q. K. Pan, P. Y. Duan, and K. Z. Gao, “Solving multiarea environmental/economic dispatch by Paretobased chemicalreaction optimization algorithm,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 5, pp. 1240–1250, Sep. 2019. doi: 10.1109/JAS.2017.7510454

[40] 
P. J. Angeline, G. M. Saunders, and J. B. Pollack, “An evolutionary algorithm that constructs recurrent neural networks,” IEEE Trans. Neural Networks, vol. 5, no. 1, pp. 54–65, Jan. 1994. doi: 10.1109/72.265960

[41] 
W. S. Gao and C. Shao, “Iterative dynamic diversity evolutionary algorithm for constrained optimization,” Acta Autom. Sinica, vol. 40, no. 11, pp. 2469–2479, Nov. 2014. doi: 10.1016/S18741029(14)603980

[42] 
S. Gupta, K. Deep, A. A. Heidari, H. Moayedi, and H. L. Chen, “Harmonized salp chainbuilt optimization,” Eng. Comput., DOI: 10.1007/s00366019008715

[43] 
D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning. Reading, USA: Addion Wesley, 1989.

[44] 
F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and J. Clune, “Deep neuroevolution: genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning,” arXiv: 1712.06567, 2017.

[45] 
J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. IEEE Int. Conf. Neural Networks, Perth, Australia, 2001, pp. 1942–1948.

[46] 
J. J. Wang and T. Kumbasar, “Parameter optimization of interval type2 fuzzy neural networks based on PSO and BBBC methods,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 247–257, Jan. 2019. doi: 10.1109/JAS.2019.1911348

[47] 
H. Shi, L. Wang, and T. G. Chu, “Swarming behavior of multiagent systems,” J. Control Theory Appl., vol. 2, no. 4, pp. 313–318, Nov. 2004. doi: 10.1007/s1176800400346

[48] 
M. G. Hinchey, R. Sterritt, and C. Rouff, “Swarms and swarm intelligence,” Computer, vol. 40, no. 4, pp. 111–113, Apr. 2007. doi: 10.1109/MC.2007.144

[49] 
X. Feng, Y. B. Wang, H. Q. Yu, and F. Luo, “A novel intelligence algorithm based on the social group optimization behaviors,” IEEE Trans. Syst.,Man,Cybern.:Syst., vol. 48, no. 1, pp. 65–76, Jan. 2018. doi: 10.1109/TSMC.2016.2586973

[50] 
M. Dorigo and G. Di Caro, “Ant colony optimization: a new metaheuristic,” in Proc. Congr. Evolutionary Computation, Washington, USA, 1999, pp. 1470–1477.

[51] 
M. Neshat, G. Sepidnam, M. Sargolzaei, and A. N. Toosi, “Artificial fish swarm algorithm: a survey of the stateoftheart, hybridization, combinatorial and indicative applications,” Artif. Intell. Rev., vol. 42, no. 4, pp. 965–997, Dec. 2014. doi: 10.1007/s1046201293422

[52] 
X. Y. Jiang and S. Li, “Bas: beetle antennae search algorithm for optimization problems,” arXiv: 1710.10724, 2017.

[53] 
X. Y. Jiang and S. Li, “Beetle antennae search without parameter tuning (BASWPT) for multiobjective optimization,” arXiv: 1711.02395, 2017.

[54] 
X. S. Yang and S. Deb, “Engineering optimisation by cuckoo search,” arXiv: 1005.2908, 2010.

[55] 
J. Zhao, S. X. Liu, M. C. Zhou, X. W. Guo, and L. Qi, “Modified cuckoo search algorithm to solve economic power dispatch optimization problems,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 4, pp. 794–806, Jul. 2018. doi: 10.1109/JAS.2018.7511138

[56] 
A. R. Mehrabian and C. Lucas, “A novel numerical optimization algorithm inspired from weed colonization,” Ecological Informatics, vol. 1, no. 4, pp. 355–366, Dec. 2006. doi: 10.1016/j.ecoinf.2006.07.003

[57] 
S. Nakrani and C. Tovey, “On honey bees and dynamic server allocation in internet hosting centers,” Adapt. Behav., vol. 12, no. 3–4, pp. 223–240, Dec. 2004. doi: 10.1177/105971230401200308

[58] 
D. Karaboga and B. Akay, “A survey: algorithms simulating bee swarm intelligence,” Artif. Intell. Rev., vol. 31, no. 1–4, pp. 61–85, Jun. 2009. doi: 10.1007/s1046200991274

[59] 
X. S. Yang, "Firefly algorithms for multimodal optimization," in Proc. 5th Int. Symp. Stochastic Algorithms: Foundations and Applications, Sapporo, Japan, 2009, pp. 169–178.

[60] 
S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,” Adv. Eng. Softw., vol. 69, pp. 46–61, Mar. 2014. doi: 10.1016/j.advengsoft.2013.12.007

[61] 
S. Gupta and K. Deep, “A novel random walk grey wolf optimizer,” Swarm Evol. Comput., vol. 44, pp. 101–112, Feb. 2019. doi: 10.1016/j.swevo.2018.01.001

[62] 
S. Gupta and K. Deep, “An oppositionbased chaotic grey wolf optimizer for global optimisation tasks,” J. Exp. Theor. Artif. Intell., vol. 31, no. 5, pp. 751–779, 2019. doi: 10.1080/0952813X.2018.1554712

[63] 
S. Gupta and K. Deep, “Improved sine cosine algorithm with crossover scheme for global optimization,” Knowl.Based Syst., vol. 165, pp. 374–406, Feb. 2019. doi: 10.1016/j.knosys.2018.12.008

[64] 
S. Gupta and K. Deep, “A hybrid selfadaptive sine cosine algorithm with opposition based learning,” Expert Syst. Appl., vol. 119, pp. 210–230, Apr. 2019. doi: 10.1016/j.eswa.2018.10.050

[65] 
M. S. Shang, X. Luo, Z. G. Liu, J. Chen, Y. Yuan, and M. C. Zhou, “Randomized latent factor model for highdimensional and sparse matrices from industrial applications,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 131–141, Jan. 2019. doi: 10.1109/JAS.2018.7511189

[66] 
Z. Y. Zhu, Z. Y. Zhang, W. S. Man, X. Q. Tong, J. Z. Qiu, and F. F. Li, “A new beetle antennae search algorithm for multiobjective energy management in microgrid,” in Proc. 13th IEEE Conf. Industrial Electronics and Applications, Wuhan, China, 2018, pp. 1599–1603.

[67] 
X. Y. Yin and Y. Ma, “Aggregation service function chain mapping plan based on beetle antennae search algorithm,” in Proc. 2nd Int. Conf. Telecommunications and Communication Engineering, Beijing, China, 2018, pp. 225–230.

[68] 
X. M. Lin, Y. F. Liu, and Y. L. Wang, “Design and research of DC motor speed control system based on improved BAS,” in Proc. Chinese Automation Congr., Xi’an, China, 2018, pp. 3701–3705.

[69] 
Y. T. Sun, J. F. Zhang, G. C. Li, Y. H. Wang, J. B. Sun, and C. Jiang, “Optimized neural network using beetle antennae search for predicting the unconfined compressive strength of jet grouting coalcretes,” Int. J. Numer. Anal. Methods Geomech., vol. 43, no. 4, pp. 801–813, Mar. 2019. doi: 10.1002/nag.2891

[70] 
Q. Wu, X. D. Shen, Y. Z. Jin, Z. Y. Chen, S. Li, A. H. Khan, and D. C. Chen, “Intelligent beetle antennae search for UAV sensing and avoidance of obstacles,” Sensors, vol. 19, no. 8, pp. 1758, Apr. 2019. doi: 10.3390/s19081758

[71] 
M. J. Lin and Q. H. Li, “A hybrid optimization method of beetle antennae search algorithm and particle swarm optimization,” DEStech Trans. Engineering and Technology Research, 2018.

[72] 
Q. Wu, H. Lin, Y. Z. Jin, Z. Y. Chen, S. Li, and D. C. Chen, “A new fallback beetle antennae search algorithm for path planning of mobile robots with collisionfree capability,” Soft Comput., vol. 24, no. 3, pp. 2369–2380, Feb. 2020. doi: 10.1007/s00500019040673

[73] 
Y. Q. Fan, J. P. Shao, and G. T. Sun, “Optimized PID controller based on beetle antennae search algorithm for electrohydraulic position servo control system,” Sensors, vol. 19, no. 12, pp. 2727, Jun. 2019. doi: 10.3390/s19122727

[74] 
S. Xie, X. M. Chu, M. Zheng, and C. G. Liu, “Ship predictive collision avoidance method based on an improved beetle antennae search algorithm,” Ocean Eng., vol. 192, pp. 106542, Nov. 2019. doi: 10.1016/j.oceaneng.2019.106542

[75] 
J. H. Yang and Z. R. Peng, “Beetleswarm evolution competitive algorithm for bridge sensor optimal placement in SHM,” IEEE Sens. J., DOI: 10.1109/JSEN.2019.2934996.

[76] 
N. Qian, “On the momentum term in gradient descent learning algorithms,” Neural Networks, vol. 12, no. 1, pp. 145–151, Jan. 1999. doi: 10.1016/S08936080(98)001166

[77] 
J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and stochastic optimization,” J. Machine Learning Research, vol. 12, pp. 2121–2159, Jun. 2011.

[78] 
M. D. Zeiler, “ADADELTA: an adaptive learning rate method,” arXiv: 1212.5701, 2012.

[79] 
A. P. Engelbrecht, “Fitness function evaluations: a fair stopping condition?” in Proc. IEEE Symp. Swarm Intelligence, Orlando, USA, 2014, pp. 1–8.

[80] 
I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural networks,” arXiv: 1409.3215, 2014.

[81] 
Mathworks, MATLAB: Global Optimization Toolbox 2018b. The Mathworks Inc., 2018.
