IEEE/CAA Journal of Automatica Sinica
Citation:  Abhinoy Kumar Singh, "Major Development Under Gaussian Filtering Since Unscented Kalman Filter," IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 13081325, Sept. 2020. doi: 10.1109/JAS.2020.1003303 
[1] 
Y. BarShalom, X. R. Li, and T. Kirubarajan, Estimation With Applications to Tracking and Navigation. New York, USA: John Wiley & Sons, 2001.

[2] 
R. G. Brown and P. Y. C. Hwang, Introduction to Random Signals and Applied Kalman Filtering. New York, USA: Wiley, 1997.

[3] 
B. D. O. Anderson and J. B. Moore, Optimal Filtering. Englewood Cliffs, USA: Prentice Hall, 1979.

[4] 
A. Gelb, Applied Optimal Estimation. Boston, USA: MIT Press, 1974.

[5] 
D. Simon, Optimal State Estimation. New Jersey, USA: Wiley, 2006.

[6] 
M. Abo, O. W. Marquez, J. McNames, R. Hornero, T. Trong, and B. Goldstein, “Adaptive modeling and spectral estimation of nonstationary biomedical signals based on Kalman filtering,” IEEE Trans. Biomed. Eng., vol. 52, no. 8, pp. 1485–1489, Aug. 2005. doi: 10.1109/TBME.2005.851465

[7] 
C. Wells, “The Kalman filter in finance,” Springer, vol. 32, 2013.

[8] 
P. L. Houtekamer and H. L. Mitchell, “Data assimilation using an ensemble kalman filter technique,” Mon. Wea. Rev., vol. 126, no. 3, pp. 796–811, Mar. 1998. doi: 10.1175/15200493(1998)126<0796:DAUAEK>2.0.CO;2

[9] 
S. Särkkä, Bayesian Filtering and Smoothing. Cambridge, USA: Cambridge University Press, 2013.

[10] 
A. H. Jazwinski, Stochastic Processes and Filtering Theory. New York, USA: Dover Publications, 2007.

[11] 
R. E. Kalman, “A new approach to linear filtering and prediction problems,” J. Basic Eng., vol. 82, no. 1, pp. 35–45, Mar. 1960. doi: 10.1115/1.3662552

[12] 
D. Godard, “Channel equalization using a Kalman filter for fast data transmission,” IBM J. Res. Dev., vol. 18, no. 3, pp. 267–273, May 1974. doi: 10.1147/rd.183.0267

[13] 
R. A. Singer, “Estimating optimal tracking filter performance for manned maneuvering targets,” IEEE Trans. Aerosp. Electron. Syst., vol. AES6, no. 4, pp. 473–483, Jul. 1970. doi: 10.1109/TAES.1970.310128

[14] 
M. Athans, R. P. Wishner, and A. Bertolini, “Suboptimal state estimation for continuoustime nonlinear systems from discrete noisy measurements,” IEEE Trans. Autom. Control, vol. 13, no. 5, pp. 504–514, Oct. 1968. doi: 10.1109/TAC.1968.1098986

[15] 
S. K. Rao, “Modified gain extended Kalman filter with application to bearingsonly passive manoeuvring target tracking,” IET Proc. Radar Sonar Navig., vol. 152, no. 4, pp. 239–244, Aug. 2005. doi: 10.1049/iprsn:20045074

[16] 
T. Song and J. Speyer, “A stochastic analysis of a modified gain extended Kalman filter with applications to estimation with bearings only measurements,” IEEE Trans. Autom. Control, vol. 30, no. 10, pp. 940–949, Oct. 1985. doi: 10.1109/TAC.1985.1103821

[17] 
S. J. Julier and J. K. Uhlmann, “New extension of the Kalman filter to nonlinear systems,” in Proc. SPIE 3068, Signal Processing, Sensor Fusion, and Target Recognition VI, 1997.

[18] 
S. Julier, J. Uhlmann, and H. F. DurrantWhyte, “A new method for the nonlinear transformation of means and covariances in filters and estimators,” IEEE Trans. Autom. Control, vol. 45, no. 3, pp. 477–482, Mar. 2000. doi: 10.1109/9.847726

[19] 
S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estimation,” Proc. IEEE, vol. 92, no. 3, pp. 401–422, Mar. 2004. doi: 10.1109/JPROC.2003.823141

[20] 
S. J. Julier and J. K. Uhlmann, “Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations,” in Proc.American Control Conf., Anchorage, USA, 2002, pp. 887–892.

[21] 
S. J. Julier, “The scaled unscented transformation,” in Proc. American Control Conf., Anchorage, USA, 2002, pp. 4555–4559.

[22] 
R. van der Merwe and E. A. Wan, “The squareroot unscented kalman filter for state and parameterestimation,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, Salt Lake City, USA, 2001, pp. 3461–3464.

[23] 
R. van der Merwe and E. A. Wan, “Efficient derivativefree Kalman filters for online learning,” in Proc. European Symp. Artificial Neural Networks, Bruges, Belgium, 2001, pp. 205–210.

[24] 
Y. X. Wu, D. W. Hu, M. P. Wu, and X. P. Hu, “Unscented Kalman filtering for additive noise case: Augmented versus nonaugmented,” IEEE Signal Process. Lett., vol. 12, no. 5, pp. 357–360, May 2005. doi: 10.1109/LSP.2005.845592

[25] 
Y. Lei, D. Xia, K. Erazo, and S. Nagarajaiah, “A novel unscented Kalman filter for recursive stateinputsystem identification of nonlinear systems,” Mech. Sys. Sign. Proc., vol. 127, pp. 120–135, Jul. 2019.

[26] 
Z. Jiang, Q. Song, Y. Q. He, and J. D. Han, “A novel adaptive unscented Kalman filter for nonlinear estimation,” in Proc. 46th IEEE Conf. Decision and Control, New Orleans, USA, 2007, pp. 4293–4298.

[27] 
L. B. Chang, B. Q. Hu, A. Li, and F. J. Qin, “Transformed unscented Kalman filter,” IEEE Trans. Autom. Control, vol. 58, no. 1, pp. 252–257, Jan. 2013. doi: 10.1109/TAC.2012.2204830

[28] 
I. Arasaratnam and S. Haykin, “Cubature Kalman filters,” IEEE Trans. Autom. Control, vol. 54, no. 6, pp. 1254–1269, Jun. 2009. doi: 10.1109/TAC.2009.2019800

[29] 
J. Mu and Y. L. Cai, “Iterated cubature Kalman filter and its application,” in Proc. IEEE Int. Conf. Cyber Tech. in Automation, Control, and Intelligent Systems, Kunming, China, 2011, pp. 33–37.

[30] 
P. H. Leong, S. Arulampalam, T. H. Lamahewa, and T. D. Abhayapala, “A Gaussiansum based cubature Kalman filter for bearingsonly tracking,” IEEE Trans. Aerosp. Electron. Syst., vol. 49, no. 2, pp. 1161–1176, Apr. 2013. doi: 10.1109/TAES.2013.6494405

[31] 
S. Y. Wang, J. C. Feng, and C. K. Tse, “Spherical simplexradial cubature Kalman filter,” IEEE Signal Process. Lett., vol. 21, no. 1, pp. 43–46, Jan. 2014. doi: 10.1109/LSP.2013.2290381

[32] 
S. Bhaumik and Swati, “Cubature quadrature Kalman filter,” IET Signal Process., vol. 7, no. 7, pp. 533–541, Sept. 2013. doi: 10.1049/ietspr.2012.0085

[33] 
S. Bhaumik and Swati, “Squareroot cubaturequadrature Kalman filter,” Asian J. Control, vol. 16, no. 2, pp. 617–622, Mar. 2014. doi: 10.1002/asjc.704

[34] 
A. K. Singh and S. Bhaumik, “Transformed cubature quadrature Kalman filter,” IET Sign. Process., vol. 11, no. 9, pp. 1095–1103, Jul. 2017. doi: 10.1049/ietspr.2017.0074

[35] 
B. Jia, M. Xin, and Y. Cheng, “Highdegree cubature Kalman filter,” Automatica, vol. 49, no. 2, pp. 510–518, Feb. 2013. doi: 10.1016/j.automatica.2012.11.014

[36] 
A. K. Singh and S. Bhaumik, “Higher degree cubature quadrature Kalman filter,” Int. J. Control Autom. Syst., vol. 13, no. 5, pp. 1097–1105, Oct. 2015. doi: 10.1007/s1255501402288

[37] 
K. Ito and K. Xiong, “Gaussian filters for nonlinear filtering problems,” IEEE Trans. Autom. Control, vol. 45, no. 5, pp. 910–927, May 2000. doi: 10.1109/9.855552

[38] 
I. Arasaratnam, S. Haykin, and R. J. Elliott, “Discretetime nonlinear filtering algorithms using GaussHermite quadrature,” Proc. IEEE, vol. 95, no. 5, pp. 953–977, May 2007. doi: 10.1109/JPROC.2007.894705

[39] 
I. Arasaratnam and S. Haykin, “Squareroot quadrature Kalman filtering,” IEEE Trans. Signal Process., vol. 56, no. 6, pp. 2589–2593, Jun. 2008. doi: 10.1109/TSP.2007.914964

[40] 
H. Singer, “Generalized gausshermite filtering,” AStA Adv. Stat. Anal., vol. 92, no. 2, pp. 179–195, May 2008. doi: 10.1007/s101820080068z

[41] 
H. Singer, “Conditional GaussHermite filtering with application to volatility estimation,” IEEE Trans. Autom. Contr., vol. 60, no. 9, pp. 2476–2481, Sept. 2015. doi: 10.1109/TAC.2015.2394952

[42] 
B. Jia, M. Xin, and Y. Cheng, “Sparsegrid quadrature nonlinear filtering,” Automatica, vol. 48, no. 2, pp. 327–341, Feb. 2012. doi: 10.1016/j.automatica.2011.08.057

[43] 
B. Jia, M. Xin, and Y. Cheng, “Sparse GaussHermite quadrature filter with application to spacecraft attitude estimation,” J. Guid. Control Dyn., vol. 34, no. 2, pp. 367–379, MarApr. 2011. doi: 10.2514/1.52016

[44] 
B. Jia, M. Xin, and Y. Cheng, “Comparison of the sparsegrid quadrature rule and the cubature rule in nonlinear filtering,” in Proc. IEEE 51st IEEE Conf. Decision and Control, Maui, USA, 2012, pp. 6022–6027.

[45] 
P. Closas, C. FernandezPrades, and J. VilaValls, “Multiple quadrature Kalman filtering,” IEEE Trans. Signal Process., vol. 60, no. 12, pp. 6125–6137, Dec. 2012. doi: 10.1109/TSP.2012.2218811

[46] 
R. Radhakrishnan, A. K. Singh, S. Bhaumik, and N. K. Tomar, “Multiple sparsegrid GaussHermite filtering,” Appl. Math. Model., vol. 40, no. 78, pp. 4441–4450, Apr. 2016. doi: 10.1016/j.apm.2015.11.035

[47] 
A. K. Singh, R. Radhakrishnan, S. Bhaumik, and P. Date, “Adaptive sparsegrid Gauss–Hermite filter,” J. Comput. Appl. Math., vol. 342, pp. 305–316, Nov. 2018. doi: 10.1016/j.cam.2018.04.006

[48] 
A. K. Singh and S. Bhaumik, “Nonlinear estimation using transformed GaussHermite quadrature points,” in Proc. IEEE Int. Conf. Signal Processing, Computing and Control, Solan, India, 2013, pp. 1–4.

[49] 
A. K. Singh, S. Bhaumik, and R. Radhakrishnan, “Nonlinear estimation with transformed cubature quadrature points, ” in Proc. IEEE Int. Symp. Signal Processing and Information Technology, Noida, India, 2014, pp. 428–432.

[50] 
D. Potnuru, K. P. B. Chandra, I. Arasaratnam, D. W. Gu, K. A. Mary, and S. B. Ch, “Derivativefree squareroot cubature Kalman filter for nonlinear brushless DC motors,” IET Electric Power Appl., vol. 10, no. 5, pp. 419–429, Apr. 2016. doi: 10.1049/ietepa.2015.0414

[51] 
K. P. B. Chandra, D. W. Gu, and I. Postlethwaite, “Square root cubature information filter,” IEEE Sens. J., vol. 13, no. 2, pp. 750–758, Feb. 2013. doi: 10.1109/JSEN.2012.2226441

[52] 
X. J. Tang, Z. B. Liu, and J. S. Zhang, “Squareroot quaternion cubature Kalman filtering for spacecraft attitude estimation,” Acta Astronaut., vol. 76, pp. 84–94, JulAug. 2012. doi: 10.1016/j.actaastro.2012.02.009

[53] 
D. Alspach and H. Sorenson, “Nonlinear Bayesian estimation using Gaussian sum approximations,” IEEE Trans. Autom. Control, vol. 17, no. 4, pp. 439–448, Aug. 1972. doi: 10.1109/TAC.1972.1100034

[54] 
P. H. Leong, S. Arulampalam, T. A. Lamahewa, and T. D. Abhayapala, “Gaussiansum cubature Kalman filter with improved robustness for bearingsonly tracking,” IEEE Signal Process. Lett., vol. 21, no. 5, pp. 513–517, May 2014. doi: 10.1109/LSP.2014.2307075

[55] 
G. Terejanu, P. Singla, T. Singh, and P. D. Scott, “Adaptive Gaussian sum filter for nonlinear Bayesian estimation,” IEEE Trans. Autom. Control, vol. 56, no. 9, pp. 2151–2156, Sept. 2011. doi: 10.1109/TAC.2011.2141550

[56] 
A. H. Jazwinski, Stochastic Processes and Filtering Theory. New York, USA: Academic, 1970.

[57] 
J. B. Jorgensen, P. G. Thomsen, H. Madsen, and M. R. Kristensen, “A computationally efficient and robust implementation of the continuousdiscrete extended Kalman filter,” in Proc. American Control Conf., New York, USA, 2007, pp. 3706–3712.

[58] 
S. Sarkka, “On unscented Kalman filtering for state estimation of continuoustime nonlinear systems,” IEEE Trans. Autom. Control, vol. 52, no. 9, pp. 1631–1641, Sept. 2007. doi: 10.1109/TAC.2007.904453

[59] 
I. Arasaratnam, S. Haykin, and T. R. Hurd, “Cubature Kalman filtering for continuousdiscrete systems: theory and simulations,” IEEE Trans. Signal Process., vol. 58, no. 10, pp. 4977–4993, Oct. 2010. doi: 10.1109/TSP.2010.2056923

[60] 
G. Y. Kulikov and M. V. Kulikova, “Accurate numerical implementation of the continuousdiscrete extended Kalman filter,” IEEE Trans. Auto. Cont., vol. 59, no. 1, pp. 273–279, Jan. 2014. doi: 10.1016/j.apm.2016.04.016

[61] 
S. C. Patwardhan, S. Narasimhan, P. Jagadeesan, B. Gopaluni, and S. L. Shah, “Nonlinear Bayesian state estimation: A review of recent developments,” Control Eng. Pract., vol. 20, no. 10, pp. 933–953, Oct. 2012. doi: 10.1016/j.conengprac.2012.04.003

[62] 
H. Z. Fang, N. Tian, Y. B. Wang, M. C. Zhou, and M. A. Haile, “Nonlinear Bayesian estimation: From Kalman filtering to a broader horizon,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 401–417, Mar. 2018. doi: 10.1109/JAS.2017.7510808

[63] 
H. Kushner, “Approximations to optimal nonlinear filters,” IEEE Trans. Autom. Control, vol. 12, no. 5, pp. 546–556, Oct. 1967. doi: 10.1109/TAC.1967.1098671

[64] 
D. Reid, “An algorithm for tracking multiple targets,” IEEE Trans. Autom. Control, vol. 24, no. 6, pp. 843–854, Dec. 1979. doi: 10.1109/TAC.1979.1102177

[65] 
R. van der Merwe and E. Wan, “Sigmapoint Kalman filters for probabilistic inference in dynamic statespace models,” in Proc. Workshop on Advances in Machine Learning. 2004.

[66] 
C. S. Manohar and D. Roy, “Monte Carlo filters for identification of nonlinear structural dynamical systems,” Sadhana, vol. 31, no. 4, pp. 399–427, Aug. 2006. doi: 10.1007/BF02716784

[67] 
V. K. Mishra, R. Radhakrishnan, A. K. Singh, and S. Bhaumik, “Bayesian filters for parameter identification of duffing oscillator,” IFACPapersOnLine, vol. 51, no. 1, pp. 425–430, Jan. 2018. doi: 10.1016/j.ifacol.2018.05.068

[68] 
R. H. Zhan and J. W. Wan, “Iterated unscented Kalman filter for passive target tracking,” IEEE Trans. Aerosp. Electron. Syst., vol. 43, no. 3, pp. 1155–1163, Jul. 2007.

[69] 
S. Jafarzadeh, C. Lascu, and M. S. Fadali, “State estimation of induction motor drives using the unscented Kalman filter,” IEEE Trans. Ind. Electron., vol. 59, no. 11, pp. 4207–4216, Nov. 2012. doi: 10.1109/TIE.2011.2174533

[70] 
P. H. Li, T. W. Zhang, and B. Ma, “Unscented Kalman filter for visual curve tracking,” Image Vision Comput., vol. 22, no. 2, pp. 157–164, Feb. 2004. doi: 10.1016/j.imavis.2003.07.004

[71] 
M. Sepasi and F. Sassani, “Online fault diagnosis of hydraulic systems using unscented Kalman filter,” Int. J. Control Autom. Syst., vol. 8, no. 1, pp. 149–156, Feb. 2010. doi: 10.1007/s1255501001196

[72] 
A. Genz, “Fully symmetric interpolatory rules for multiple integrals over hyperspherical surfaces,” J. Comput. Appl. Math., vol. 157, no. 1, pp. 187–195, Aug. 2003. doi: 10.1016/S03770427(03)004138

[73] 
A. H. Stroud, Approximate Calculation of Multiple Integrals. Englewood Cliffs, USA: PrenticeHall, 1971.

[74] 
V. I. Krylov, Approximate Calculation of Integrals. New York, USA: Dover, 2006.

[75] 
F. B. Hildebrand, Introduction to Numerical Analysis. 2nd ed. New York, USA: McGraw Hill, 1973.

[76] 
J. Zarei, E. Shokri, and H. R. Karimi, “Convergence analysis of cubature Kalman filter,” in Proc. European Control Conf., Strasbourg, France, 2014.

[77] 
M. Havlicek, K. J. Friston, J. Jan, M. Brazdil, and V. D. Calhoun, “Dynamic modeling of neuronal responses in fMRI using cubature Kalman filtering,” NeuroImage, vol. 56, no. 4, pp. 2109–2128, Jun. 2011. doi: 10.1016/j.neuroimage.2011.03.005

[78] 
W. L. Li and Y. M. Jia, “Location of mobile station with maneuvers using an IMMbased cubature Kalman filter,” IEEE Trans. Ind. Electron., vol. 59, no. 11, pp. 4338–4348, Nov. 2012. doi: 10.1109/TIE.2011.2180270

[79] 
Y. Wu, D. Hu, M. Wu, and X. Hu, “A numericalintegration perspective on Gaussian filters,” IEEE Trans. Signal Process., vol. 54, no. 8, pp. 2910–2921, Aug. 2006. doi: 10.1109/TSP.2006.875389

[80] 
R. Cools and P. Rabinowitz, “Monomial cubature rules since “Stroud”: A compilation,” J. Comput. Appl. Math., vol. 48, no. 3, pp. 309–326, Nov. 1993. doi: 10.1016/03770427(93)900279

[81] 
F. B. Hildebrand, Introduction to Numerical Analysis. 2nd ed. St. Mineola, USA: Dover, 1987.

[82] 
S. S. Bonan and D. S. Clark, “Estimates of the Hermite and the Freud polynomials,” J. Approx. Theory, vol. 63, no. 2, pp. 210–224, Nov. 1990. doi: 10.1016/00219045(90)90104X

[83] 
Y. H. Ku and M. Drubin, “Network synthesis using legendre and Hermite polynomials,” J. Frank. Inst., vol. 273, no. 2, pp. 138–157, Feb. 1962. doi: 10.1016/00160032(62)906464

[84] 
A. K. Singh, K. Kumar, Swati, and S. Bhaumik “Cubature and quadrature based continuousdiscrete filters for maneuvering target tracking,” in Proc. 21st Int. Conf. Information Fusion, Cambridge, 2018.

[85] 
S. A. Smolyak, “Quadrature and interpolation formulas for tensor products of certain classes of functions,” Dokl. Akad. Nauk SSSR, vol. 148, no. 5, pp. 1042–1045, 1963.

[86] 
T. Gerstner and M. Griebel, “Dimensionadaptive tensorproduct quadrature,” Computing, vol. 71, no. 1, pp. 65–87, Aug. 2003. doi: 10.1007/s0060700300155

[87] 
M. S. Grewal, L. R. Weill, and A. P. Andrews, Global Positioning Systems, Inertial Navigation, and Integration. Hoboken, USA: Wiley, 2001.

[88] 
K. J. Astrom, Introduction to Stochastic Control Theory. New York, USA: Dover, 1970.

[89] 
G. Terejanu, P. Singla, T. Singh, and P. D. Scott, “Uncertainty propagation for nonlinear dynamic systems using Gaussian mixture models,” J. Guid. Control Dyn., vol. 31, no. 6, pp. 1623–1633, Nov.Dec. 2008. doi: 10.2514/1.36247

[90] 
M. Kumar, S. Chakravorty, P. Singla, and J. L. Junkins, “The partition of unity finite element approach with hprefinement for the stationary FokkerPlanck equation,” J. Sound Vibr., vol. 327, no. 12, Oct. 2009.

[91] 
P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations. Berlin, Germany: Springer, 1991.
