A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 7 Issue 6
Oct.  2020

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 6.171, Top 11% (SCI Q1)
    CiteScore: 11.2, Top 5% (Q1)
    Google Scholar h5-index: 51, TOP 8
Turn off MathJax
Article Contents
Haiyan Zhao, Jing Yan, Xiaoyuan Luo and Xinping Guan, "Privacy Preserving Solution for the Asynchronous Localization of Underwater Sensor Networks," IEEE/CAA J. Autom. Sinica, vol. 7, no. 6, pp. 1511-1527, Nov. 2020. doi: 10.1109/JAS.2020.1003312
Citation: Haiyan Zhao, Jing Yan, Xiaoyuan Luo and Xinping Guan, "Privacy Preserving Solution for the Asynchronous Localization of Underwater Sensor Networks," IEEE/CAA J. Autom. Sinica, vol. 7, no. 6, pp. 1511-1527, Nov. 2020. doi: 10.1109/JAS.2020.1003312

Privacy Preserving Solution for the Asynchronous Localization of Underwater Sensor Networks

doi: 10.1109/JAS.2020.1003312
Funds:  This work was supported in part by the National Natural Science Foundation of China (61873345, 61973263), the Youth Talent Support Program of Hebei (BJ2018050, BJ2020031), the Teturned Overseas Chinese Scholar Foundation of Hebei (C201829), the Natural Science Foundation of Hebei (F2020203002), and the Postgraduate Innovation Fund Project of Hebei (CXZZSS2019047)
More Information
  • Location estimation of underwater sensor networks (USNs) has become a critical technology, due to its fundamental role in the sensing, communication and control of ocean volume. However, the asynchronous clock, security attack and mobility characteristics of underwater environment make localization much more challenging as compared with terrestrial sensor networks. This paper is concerned with a privacy-preserving asynchronous localization issue for USNs. Particularly, a hybrid network architecture that includes surface buoys, anchor nodes, active sensor nodes and ordinary sensor nodes is constructed. Then, an asynchronous localization protocol is provided, through which two privacy-preserving localization algorithms are designed to estimate the locations of active and ordinary sensor nodes. It is worth mentioning that, the proposed localization algorithms reveal disguised positions to the network, while they do not adopt any homomorphic encryption technique. More importantly, they can eliminate the effect of asynchronous clock, i.e., clock skew and offset. The performance analyses for the privacy-preserving asynchronous localization algorithms are also presented. Finally, simulation and experiment results reveal that the proposed localization approach can avoid the leakage of position information, while the location accuracy can be significantly enhanced as compared with the other works.

     

  • loading
  • [1]
    J. Yan, Y. D. Gong, C. L. Chen, X. Y. Luo, and X. P. Guan, “AUV-aided localization for internet of underwater things: A reinforcement learningbased method,” IEEE Internet Things J., 2020, DOI: 10.1109/JIOT.2020.2993012.
    [2]
    J. Yan, H. Y. Zhao, X. Y. Luo, C. L. Chen, and X. P. Guan, “RSSI-based heading control for robust long-range aerial communication in UAV networks,” IEEE Internet Things J., vol. 6, no. 2, pp. 1675–1689, Apr. 2019. doi: 10.1109/JIOT.2018.2875428
    [3]
    S. M. Jiang, “On reliable data transfer in underwater acoustic networks: A survey from networking perspective,” IEEE Commun. Surv. and Tutorials, vol. 20, no. 2, pp. 1036–1055, May 2018.
    [4]
    J. Yan, D. B. Guo, X. Y. Luo, and X. P. Guan, “AUV-aided localization for underwater acoustic sensor networks with current field estimation,” IEEE Trans. Veh. Technol., 2020, DOI: 10.1109/TVT.2020.2996513.
    [5]
    D. Zhang, M. Q. Liu, S. L. Zhang, and Q. F. Zhang, “Non-myopic energy allocation for target tracking in energy harvesting UWSNs,” IEEE Sens. J., vol. 19, no. 10, pp. 3772–3783, May 2019. doi: 10.1109/JSEN.2018.2890078
    [6]
    Z. Y. Gao, and G. Guo, “Fixed-time sliding mode formation control of AUVs based on a disturbance observer,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 539–545, Mar. 2020. doi: 10.1109/JAS.2020.1003057
    [7]
    S. Wang, L. Chen, D. B. Gu, and H. S. Hu, “Cooperative localization of AUVs using moving horizon estimation,” IEEE/CAA J. Autom. Sinica, vol. 1, no. 1, pp. 68–76, Jan. 2014. doi: 10.1109/JAS.2014.7004622
    [8]
    J. Wang, X. Zhang, Q. H. Gao, H. Yue, and H. Y. Wang, “Device-free wireless localization and activity recognition: A deep learning approach,” IEEE Trans. Veh. Technol., vol. 66, no. 7, pp. 6258–6267, Jul. 2017. doi: 10.1109/TVT.2016.2635161
    [9]
    G. J. Han, X. Yang, L. Liu, W. B. Zhang, and M. Guizani, “A disaster management-oriented path planning for mobile anchor node-based localization in wireless sensor networks,” IEEE Trans. Emerg. Top. Comput., vol. 8, no. 1, pp. 115–125, Jan. 2020. doi: 10.1109/TETC.2017.2687319
    [10]
    J. Wang, L. M. Zhang, Q. H. Gao, M. Pan, and H. Y. Wang, “Device-free wireless sensing in complex scenarios using spatial structural information,” IEEE Trans. Wireless Commun., vol. 17, no. 4, pp. 2432–2442, Apr. 2018. doi: 10.1109/TWC.2018.2796086
    [11]
    B. W. Chen, S. Rho, M. Imran, M. Guizani, and W. K. Fan, “Cognitive sensors based on ridge phase-smoothing localization and multiregional histograms of oriented gradients,” IEEE Trans. Emerg. Top. Comput., vol. 7, no. 1, pp. 123–134, Mar. 2019. doi: 10.1109/TETC.2016.2585040
    [12]
    P. Carroll, K. Mahmood, S. L. Zhou, H. Zhou, X. K. Xu, and J. W. Cui, “Ondemand asynchronous localization for underwater sensor networks,” IEEE Trans. Signal Process., vol. 62, no. 13, pp. 3337–3348, Jul. 2014. doi: 10.1109/TSP.2014.2326996
    [13]
    J. Yan, X. N. Zhang, X. Y. Luo, Y. Y. Wang, C. L. Chen, and X. P. Guan, “Asynchronous localization with mobility prediction for underwater acoustic sensor networks,” IEEE Trans. Veh. Technol., vol. 67, no. 3, pp. 2543–2556, Mar. 2018. doi: 10.1109/TVT.2017.2764265
    [14]
    J. Liu, Z. H. Wang, J. H. Cui, S. L. Zhou, and B. Yang, “A joint time synchronization and localization design for mobile underwater sensor networks,” IEEE Trans. Mob. Comput., vol. 15, no. 3, pp. 530–543, Mar. 2016. doi: 10.1109/TMC.2015.2410777
    [15]
    E. Mortazavi, R. Javidan, M. Dehghani, and V. Kavoosi, “A robust method for underwater wireless sensor joint localization and synchronization,” Ocean Eng., vol. 137, no. 2, pp. 276–286, Jun. 2017.
    [16]
    H. Li, Y. H. He, X. Z. Cheng, H. S. Zhu, and L. M. Sun, “Security and privacy in localization for underwater sensor networks,” IEEE Commun. Mag., vol. 53, no. 11, pp. 56–62, Nov. 2015. doi: 10.1109/MCOM.2015.7321972
    [17]
    A. Konstantinidis, G. Chatzimilioudis, D. Zeinalipour-Yazti, P. Mpeis, N. Pelekis, and Y. Theodoridis, “Privacy-preserving indoor localization on smartphones,” IEEE Trans. Knowl. Data Eng., vol. 27, no. 11, pp. 3042–3055, Nov. 2015. doi: 10.1109/TKDE.2015.2441724
    [18]
    T. Shu, Y. Y. Chen, and J. Yang, “Protecting multi-lateral privacy in pervasive environments,” IEEE/ACM Trans. Netw., vol. 23, no. 5, pp. 1688–1701, Oct. 2015. doi: 10.1109/TNET.2015.2478881
    [19]
    X. F. Shi and J. F. Wu, “To hide private position information in localization using time difference of arrival,” IEEE Trans. Signal Process., vol. 66, no. 18, pp. 4946–4956, Sep. 2018. doi: 10.1109/TSP.2018.2858187
    [20]
    G. H. Wang, J. P. He, X. F. Shi, J. P. Pan, and S. B. Shen, “Analyzing and evaluating efficient privacy-preserving localization for pervasive computing,” IEEE Internet Things J., vol. 5, no. 4, pp. 2993–3007, Aug. 2018. doi: 10.1109/JIOT.2017.2772291
    [21]
    X. Z. Cheng, H. N. Shu, Q. L. Liang, and D. H. C. Du, “Silent positioning in underwater acoustic sensor networks,” IEEE Trans. Veh. Technol., vol. 57, no. 3, pp. 1756–1766, May 2008. doi: 10.1109/TVT.2007.912142
    [22]
    X. Liu, J. J. Yin, S. G. Zhang, B. Ding, S. Guo, and K. Wang, “Range-based localization for sparse 3-D sensor networks,” IEEE Internet Things J., vol. 6, no. 1, pp. 753–764, Feb. 2019. doi: 10.1109/JIOT.2018.2856267
    [23]
    J. M. Chen, C. Q. Wang, Y. X. Sun, and X. M. Shen, “Semi-supervised laplacian regularized least squares algorithm for localization in wireless sensor networks,” Comput. Netw., vol. 55, no. 10, pp. 2481–2491, Apr. 2011. doi: 10.1016/j.comnet.2011.04.010
    [24]
    F. Zafari, A. Gkelias, and K. K. Leung, “A survey of indoor localization systems and technologies,” IEEE Commun. Surv. and Tutorials, vol. 21, no. 3, pp. 2568–2599, Apr. 2019.
    [25]
    P. H. Tsai, R. G. Tsai, and S. S. Wang, “Hybrid localization approach for underwater sensor networks,” J. Sensors, vol. 2017, no. 2017, pp. 1–13, Nov. 2017.
    [26]
    Z. Zhou, Z. Peng, J. H. Cui, Z. J. Shi, and A. Bagtzoglou, “Scalable localization with mobility prediction for underwater sensor networks,” IEEE Trans. Mob. Comput., vol. 10, no. 3, pp. 335–348, Mar. 2011. doi: 10.1109/TMC.2010.158
    [27]
    B. B. Zhang, H. Y. Wang, L. M. Zheng, J. F. Wu, and Z. W. Zhuang, “Joint synchronization and localization for underwater sensor networks considering stratification effect,” IEEE Access, vol. 5, no. 1, pp. 26932–26943, Nov. 2017.
    [28]
    Z. J. Gong, C. Li, and F. Jiang, “AUV-aided joint localization and time synchronization for underwater acoustic sensor networks,” IEEE Signal Process. Lett., vol. 25, no. 4, pp. 477–481, Apr. 2018. doi: 10.1109/LSP.2018.2799699
    [29]
    J. Yan, H. J. Ban, X. Y. Luo, H, Y. Zhao, and X. P. Guan, “Joint localization and tracking design for AUV with asynchronous clocks and state disturbances,” IEEE Trans. Veh. Technol., vol. 68, no. 5, pp. 4707–4720, Mar. 2019. doi: 10.1109/TVT.2019.2903212
    [30]
    J. Yan, H. Y. Zhao, Y. Y. Wang, X. Y. Luo, and X. P. Guan, “Asynchronous localization for UASNs: An unscented transform-based method,” IEEE Signal Process. Lett., vol. 26, no. 4, pp. 602–606, Apr. 2019. doi: 10.1109/LSP.2019.2902273
    [31]
    T. Alexandri, E. Miller, E. Spanier, and R. Diamant, “Tracking the slipper lobster using acoustic tagging: Testbed description,” IEEE J. Oceanic Eng., vol. 45, no. 2, pp. 577–585, Apr. 2020. doi: 10.1109/JOE.2018.2880862
    [32]
    D. Haddad, W. Martins, M. Costa, L. Biscainho, L. Nunes, and B. Lee, “Robust acoustic self-localization of mobile devices,” IEEE Trans. Mob. Comput., vol. 15, no. 4, pp. 982–995, Apr. 2016. doi: 10.1109/TMC.2015.2439278
    [33]
    R. Diamant and L. Lampe, “Underwater localization with timesynchronization and propagation speed uncertainties,” IEEE Trans. Mob. Comput., vol. 12, no. 7, pp. 1257–1269, Jul. 2013. doi: 10.1109/TMC.2012.100
    [34]
    A. Jolfaei, X. W. Wu, and V. Muthukkumarasamy, “On the security of permutation-only image encryption schemes,” IEEE Trans. Inf. Forensics Secur., vol. 11, no. 2, pp. 235–246, Feb. 2016. doi: 10.1109/TIFS.2015.2489178
    [35]
    P. Ostovari, J. Wu, A. Khreishah, and N. B. Shroff, “Scalable video streaming with helper nodes using random linear network coding,” IEEE/ACM Trans. Netw., vol. 24, no. 3, pp. 1574–1587, Jun. 2016. doi: 10.1109/TNET.2015.2427161
    [36]
    M. Aiash, R. Colson, and M. Kallash, “Introducing a hybrid infrastructure and information-centric approach for secure cloud computing,” in Proc. IEEE Int. Conf. Advanced Information Networking and Applications, Gwangiu, South Korea, Feb. 2015, 154−159.
    [37]
    S. W. Wang, L. S. Huang, Y. W. Nie, P. Z. Wang, H. L. Xu, and W. Yang, “PrivSet: Set-valued data analyses with locale differential privacy,” in Proc. IEEE INFOCOM, Honolulu, USA, Apr. 2018, 1088−1096.
    [38]
    Y. F. Wang, M. J. Huang, Q. Jin, and J. H. Ma, “DP3: A differential privacybased privacy-preserving indoor localization mechanism,” IEEE Commun. Lett., vol. 22, no. 12, pp. 2547–2550, Dec. 2018. doi: 10.1109/LCOMM.2018.2876449
    [39]
    J. Liu, Z. H. Wang, Z. Peng, J. H. Cui, and L. Fiondella, “Suave: Swarm underwater autonomous vehicle localization,” in Proc. IEEE INFOCOM, Toronto, Canada, Apr. 2014, 64−72.
    [40]
    C. Bechaz and H. Thomas, “GIB system: The underwater GPS solution,” in Proc. 5th ECUA, Villeurbanne, May 2000, 613−618.
    [41]
    G. Aiello and G. Rogerson, “Ultra-wideband wireless systems,” IEEE Microwave Mag., vol. 4, no. 2, pp. 36–47, Jun. 2003. doi: 10.1109/MMW.2003.1201597

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article Metrics

    Article views (876) PDF downloads(53) Cited by()

    Highlights

    • Asynchronous clock, mobility and privacy preservation are together considered.
    • Asynchronous localization protocol can effectively eliminate asynchronous clock.
    • Asynchronous localization algorithm can effectively hide privacy information.
    • Location accuracy can be guaranteed as compared with the others works.

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return