A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 8 Issue 1
Jan.  2021

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 6.171, Top 11% (SCI Q1)
    CiteScore: 11.2, Top 5% (Q1)
    Google Scholar h5-index: 51, TOP 8
Turn off MathJax
Article Contents
Zhibin Li, Shuai Li and Xin Luo, "An Overview of Calibration Technology of Industrial Robots," IEEE/CAA J. Autom. Sinica, vol. 8, no. 1, pp. 23-36, Jan. 2021. doi: 10.1109/JAS.2020.1003381
Citation: Zhibin Li, Shuai Li and Xin Luo, "An Overview of Calibration Technology of Industrial Robots," IEEE/CAA J. Autom. Sinica, vol. 8, no. 1, pp. 23-36, Jan. 2021. doi: 10.1109/JAS.2020.1003381

An Overview of Calibration Technology of Industrial Robots

doi: 10.1109/JAS.2020.1003381
Funds:  This research is supported in part by the National Natural Science Foundation of China (61772493), in part by the Guangdong Province Universities and College Pearl River Scholar Funded Scheme (2019), and in part by the Natural Science Foundation of Chongqing (cstc2019jcyjjqX0013). Z. B. Li and S. Li conributed equally to this research
More Information
  • With the continuous improvement of automation, industrial robots have become an indispensable part of automated production lines. They are widely used in a number of industrial production activities, such as spraying, welding, handling, etc., and have a great role in these sectors. Recently, the robotic technology is developing towards high precision, high intelligence. Robot calibration technology has a great significance to improve the accuracy of robot. However, it has much work to be done in the identification of robot parameters. The parameter identification work of existing serial and parallel robots is introduced. On the one hand, it summarizes the methods for parameter calibration and discusses their advantages and disadvantages. On the other hand, the application of parameter identification is introduced. This overview has a great reference value for robot manufacturers to choose proper identification method, points further research areas for researchers. Finally, this paper analyzes the existing problems in robot calibration, which may be worth researching in the future.


  • loading
  • [1]
    Y. H. Gan, J. J. Duan, and X. Z. Dai, “A calibration method of robot kinematic parameters by drawstring displacement sensor,” Int. J. Adv. Robot. Syst., vol. 16, no. 5, pp. 1–9, Sept.–Oct. 2019.
    G. Chen, T. Li, M. Chu, J. Q. Xuan, and S. H. Xu, “Review on kinematics calibration technology of serial robots,” Int. J. Precis. Eng. Manuf., vol. 15, no. 8, pp. 1759–1774, Aug. 2014. doi: 10.1007/s12541-014-0528-1
    I. W. Park, B. J. Lee, S. H. Cho, Y. D. Hong, and J. H. Kim, “Laser-based kinematic calibration of robot manipulator using differential kinematics,” IEEE/ASME Trans. Mech., vol. 17, no. 6, pp. 1059–1067, Dec. 2012. doi: 10.1109/TMECH.2011.2158234
    H. X. Wang, S. H. Shen, and X. Lu, “A screw axis identification method for serial robot calibration based on the POE model,” Ind. Robot., vol. 39, no. 2, pp. 146–153, Mar. 2012. doi: 10.1108/01439911211201609
    T. Li, K. Sun, Z. W. Xie, and H. Liu, “Optimal measurement configurations for kinematic calibration of six-DOF serial robot,” J. Cent. South Univ. Technol., vol. 18, no. 3, pp. 618–626, Jun. 2011. doi: 10.1007/s11771-011-0739-x
    H. N. Nguyen, J. Zhou, and H. J. Kang, “A calibration method for enhancing robot accuracy through integration of an extended Kalman filter algorithm and an artificial neural network,” Neurocomputing, vol. 151, pp. 996–1005, Mar. 2015. doi: 10.1016/j.neucom.2014.03.085
    R. B. He, Y. J. Zhao, S. N. Yang, and S. Z. Yang, “Kinematic-parameter identification for serial-robot calibration based on POE formula,” IEEE Trans. Robot., vol. 26, no. 3, pp. 411–423, Jun. 2010. doi: 10.1109/TRO.2010.2047529
    A. Nubiola and I. A. Bonev, “Absolute calibration of an ABB IRB 1600 robot using a laser tracker,” Robot. Comput.-Integr. Manuf., vol. 29, no. 1, pp. 236–245, Feb. 2013. doi: 10.1016/j.rcim.2012.06.004
    Z. H. Jiang, W. G. Zhou, H. Li, Y. Mo, W. C. Ni, and Q. Huang, “A new kind of accurate calibration method for robotic kinematic parameters based on the extended Kalman and particle filter algorithm,” IEEE Trans. Ind. Electron., vol. 65, no. 4, pp. 3337–3345, Apr. 2018. doi: 10.1109/TIE.2017.2748058
    J. Santolaria, F. J. Brosed, J. Velázquez, and R. Jiménez, “Self-alignment of on-board measurement sensors for robot kinematic calibration,” Precis. Eng., vol. 37, no. 3, pp. 699–710, Jul. 2013. doi: 10.1016/j.precisioneng.2013.02.003
    R. B. He, X. W. Li, T. L. Shi, B. Wu, Y. J. Zhao, F. L. Han, S. N. Yang, S. H. Huang, and S. Z. Yang, “A kinematic calibration method based on the product of exponentials formula for serial robot using position measurements,” Robotica, vol. 33, no. 6, pp. 1295–1313, Jul. 2015. doi: 10.1017/S026357471400071X
    L. Wu, X. D. Yang, K. Chen, and H. L. Ren, “A minimal POE-based model for robotic kinematic calibration with only position measurements,” IEEE Trans. Autom. Sci. Eng., vol. 12, no. 2, pp. 758–763, Apr. 2015. doi: 10.1109/TASE.2014.2328652
    X. D. Yang, L. Wu, J. Q. Li, and K. Chen, “A minimal kinematic model for serial robot calibration using POE formula,” Robot. Comput.-Integr. Manuf., vol. 30, no. 3, pp. 326–334, Jun. 2014. doi: 10.1016/j.rcim.2013.11.002
    T. Messay, R. Ordóñez, and E. Marcil, “Computationally efficient and robust kinematic calibration methodologies and their application to industrial robots,” Robot. Comput.-Integr. Manuf., vol. 37, pp. 33–48, Feb. 2016. doi: 10.1016/j.rcim.2015.06.003
    T. Sun, Y. P. Zhai, Y. M. Song, and J. T. Zhang, “Kinematic calibration of a 3-DOF rotational parallel manipulator using laser tracker,” Robot. Comput.-Integr. Manuf., vol. 41, pp. 78–91, Oct. 2016. doi: 10.1016/j.rcim.2016.02.008
    Y. M. Song, J. T. Zhang, B. B. Lian, and T. Sun, “Kinematic calibration of a 5-DOF parallel kinematic machine,” Precis. Eng., vol. 45, pp. 242–261, Jul. 2016. doi: 10.1016/j.precisioneng.2016.03.002
    G. L. Du and P. Zhang, “Online serial manipulator calibration based on multisensory process via extended Kalman and particle filters,” IEEE Trans. Ind. Electron., vol. 61, no. 12, pp. 6852–6859, Dec. 2014. doi: 10.1109/TIE.2014.2314051
    C. T. Mao, S. Li, Z. W. Chen, H. F. Zu, Z. R. Wang, and Y. X. Wang, “A novel algorithm for robust calibration of kinematic manipulators and its experimental validation,” IEEE Access, vol. 7, pp. 90487–90496, Jul. 2019. doi: 10.1109/ACCESS.2019.2926801
    A. Joubair and I. A. Bonev, “Kinematic calibration of a six-axis serial robot using distance and sphere constraints,” Int. J. Adv. Manuf. Technol., vol. 77, no. 1–4, pp. 515–523, Mar. 2015. doi: 10.1007/s00170-014-6448-5
    A. Joubair and A. Bonev, “Comparison of the efficiency of five observability indices for robot calibration,” Mech. Mach. Theory, vol. 70, pp. 254–265, Dec. 2013. doi: 10.1016/j.mechmachtheory.2013.07.015
    J. Zhou, H. N. Nguyen, and H. J. Kang, “Selecting optimal measurement poses for kinematic calibration of industrial robots,” Adv. Mech. Eng., vol. 2014, Article ID 291389, Jan. 2014.
    G. L. Chen, H. Wang, and Z. Q. Lin, “Determination of the identifiable parameters in robot calibration based on the POE formula,” IEEE Trans. Robot., vol. 30, no. 5, pp. 1066–1077, Oct. 2014. doi: 10.1109/TRO.2014.2319560
    P. J. Bai, J. P. Mei, T. Huang, and D. G. Chetwynd, “Kinematic calibration of Delta robot using distance measurements,” Proc. Inst. Mech. Eng. C:J. Mech. Eng. Sci., vol. 230, no. 3, pp. 414–424, Feb. 2016. doi: 10.1177/0954406215603739
    Z. T. Fu, J. S. Dai, K. Yang, X. B. Chen, and P. López-Custodio, “Analysis of unified error model and simulated parameters calibration for robotic machining based on Lie theory,” Robot. Comput.-Integr. Manuf., vol. 61, Article ID 101855, Feb. 2020.
    A. Filion, A. Joubair, A. S. Tahan, and I. A. Bonev, “Robot calibration using a portable photogrammetry system,” Robot. Comput.-Integr. Manuf., vol. 49, pp. 77–87, Feb. 2018. doi: 10.1016/j.rcim.2017.05.004
    K. Kamali and I. A. Bonev, “Optimal experiment design for elasto-geometrical calibration of industrial robots,” IEEE/ASME Trans. Mech., vol. 24, no. 6, pp. 2733–2744, Dec. 2019. doi: 10.1109/TMECH.2019.2944428
    C. Escande, T. Chettibi, R. Merzouki, V. Coelen, and P. M. Pathak, “Kinematic calibration of a multisection bionic manipulator,” IEEE/ASME Trans. Mech., vol. 20, no. 2, pp. 663–674, Apr. 2015. doi: 10.1109/TMECH.2014.2313741
    Q. X. Jia, S. W. Wang, G. Chen, L. Wang, and H. X. Sun, “A novel optimal design of measurement configurations in robot calibration,” Math. Problems Eng., vol. 2018, Article ID 4689710, Apr. 2018.
    L. Ma, P. Bazzoli, P. M. Sammons, R. G. Landers, and D. A. Bristow, “Modeling and calibration of high-order joint-dependent kinematic errors for industrial robots,” Robot. Comput.-Integr. Manuf., vol. 50, pp. 153–167, Apr. 2018. doi: 10.1016/j.rcim.2017.09.006
    C. Li, Y. Q. Wu, H. Löwe, and Z. X. Li, “POE-based robot kinematic calibration using axis configuration space and the adjoint error model,” IEEE Trans. Robot., vol. 32, no. 5, pp. 1264–1279, Oct. 2016. doi: 10.1109/TRO.2016.2593042
    J. Santolaria, A. Brau, J. Velázquez, and J. J. Aguilar, “A self-centering active probing technique for kinematic parameter identification and verification of articulated arm coordinate measuring machines,” Meas. Sci. Technol., vol. 21, no. 5, Article ID. 055101, Mar. 2010.
    C. F. Hong and S. Ibaraki, “Non-contact R-test with laser displacement sensors for error calibration of five-axis machine tools,” Precis. Eng., vol. 37, no. 1, pp. 159–171, Jan. 2013. doi: 10.1016/j.precisioneng.2012.07.012
    A. Klimchik, B. Furet, S. Caro, and A. Pashkevich, “Identification of the manipulator stiffness model parameters in industrial environment,” Mech. Mach. Theory, vol. 90, pp. 1–22, Aug. 2015. doi: 10.1016/j.mechmachtheory.2015.03.002
    G. L. Du, P. Zhang, and D. Li, “Online robot calibration based on hybrid sensors using Kalman filters,” Robot. Comput.-Integr. Manuf., vol. 31, pp. 91–100, Feb. 2015. doi: 10.1016/j.rcim.2014.08.002
    M. Abtahi, H. Pendar, A. Alasty, and G. Vossoughi, “Experimental kinematic calibration of parallel manipulators using a relative position error measurement system,” Robot. Comput.-Integr. Manuf., vol. 26, no. 6, pp. 799–804, Dec. 2010. doi: 10.1016/j.rcim.2010.05.007
    W. Wang, F. Liu, and C. Yun, “Calibration method of robot base frame using unit quaternion form,” Precis. Eng., vol. 41, pp. 47–54, Jul. 2015. doi: 10.1016/j.precisioneng.2015.01.005
    A. Joubair and I. A. Bonev, “Non-kinematic calibration of a six-axis serial robot using planar constraints,” Precis. Eng., vol. 40, pp. 325–333, Apr. 2015. doi: 10.1016/j.precisioneng.2014.12.002
    Y. E. Wu, A. Klimchik, S. Caro, B. Furet, and A. Pashkevich, “Geometric calibration of industrial robots using enhanced partial pose measurements and design of experiments,” Robot. Comput.-Integr. Manuf., vol. 35, pp. 151–168, Oct. 2015. doi: 10.1016/j.rcim.2015.03.007
    A. Joubair, M. Slamani, and I. A. Bonev, “A novel XY-Theta precision table and a geometric procedure for its kinematic calibration,” Robot. Comput.-Integr. Manuf., vol. 28, no. 1, pp. 57–65, Feb. 2012. doi: 10.1016/j.rcim.2011.06.006
    S. Marie, E. Courteille, and P. Maurine, “Elasto-geometrical modeling and calibration of robot manipulators: application to machining and forming applications,” Mech. Mach. Theory, vol. 69, pp. 13–43, Nov. 2013. doi: 10.1016/j.mechmachtheory.2013.05.003
    J. Santolaria and M. Ginés, “Uncertainty estimation in robot kinematic calibration,” Robot. Comput.-Integr. Manuf., vol. 29, no. 2, pp. 370–384, 2013. doi: 10.1016/j.rcim.2012.09.007
    A. Joubair, M. Slamani, and I. A. Bonev, “Kinematic calibration of a 3-dof planar parallel robot,” Ind. Robot., vol. 39, no. 4, pp. 392–400, Jun. 2012. doi: 10.1108/01439911211227971
    J. Wu, J. S. Wang, and Z. You, “An overview of dynamic parameter identification of robots,” Robot. Comput.-Integr. Manuf., vol. 26, no. 5, pp. 414–419, Oct. 2010. doi: 10.1016/j.rcim.2010.03.013
    M. Gautier, A. Janot, and P. O. Vandanjon, “A new closed-loop output error method for parameter identification of robot dynamics,” IEEE Trans. Control Syst. Technol., vol. 21, no. 2, pp. 428–444, Mar. 2013. doi: 10.1109/TCST.2012.2185697
    W. J. Tian, M. W. Mou, J. H. Yang, and F. W. Yin, “Kinematic calibration of a 5-DOF hybrid kinematic machine tool by considering the ill-posed identification problem using regularisation method,” Robot. Comput.-Integr. Manuf., vol. 60, pp. 49–62, Dec. 2019. doi: 10.1016/j.rcim.2019.05.016
    Y. Jiang, T. M. Li, L. P. Wang, and F. F. Chen, “Kinematic error modeling and identification of the over-constrained parallel kinematic machine,” Robot. Comput.-Integr. Manuf., vol. 49, pp. 105–119, Feb. 2018. doi: 10.1016/j.rcim.2017.06.001
    S. L. Zhang, S. Wang, F. S. Jing, and M. Tan, “A sensorless hand guiding scheme based on model identification and control for industrial robot,” IEEE Trans. Ind. Inform., vol. 15, no. 9, pp. 5204–5213, Sep. 2019. doi: 10.1109/TII.2019.2900119
    G. L. Wu and G. L. Shi, “Experimental statics calibration of a multi-constraint parallel continuum robot,” Mech. Mach. Theory, vol. 136, pp. 72–85, Jun. 2019. doi: 10.1016/j.mechmachtheory.2019.02.013
    T. Huang, D. Zhao, F. W. Yin, W. J. Tian, and D. G. Chetwynd, “Kinematic calibration of a 6-DOF hybrid robot by considering multicollinearity in the identification Jacobian,” Mech. Mach. Theory, vol. 131, pp. 371–384, Jan. 2019. doi: 10.1016/j.mechmachtheory.2018.10.008
    C. Fan, G. L. Zhao, J. Zhao, L. Zhang, and L. N. Sun, “Calibration of a parallel mechanism in a serial-parallel polishing machine tool based on genetic algorithm,” Int. J. Adv. Manuf. Technol., vol. 81, no. 1, pp. 27–37, May 2015.
    P. Huang, J. S. Wang, L. P. Wang, and R. Yao, “Kinematical calibration of a hybrid machine tool with regularization method,” Int. J. Mach. Tools Manuf., vol. 51, no. 3, pp. 210–220, Mar. 2011. doi: 10.1016/j.ijmachtools.2010.11.009
    J. X. Fu, F. Gao, W. X. Chen, Y. Pan, and R. F. Lin, “Kinematic accuracy research of a novel six-degree-of-freedom parallel robot with three legs,” Mech. Mach. Theory, vol. 102, pp. 86–102, Aug. 2016. doi: 10.1016/j.mechmachtheory.2016.03.022
    D. Zhang and Z. Gao, “Optimal kinematic calibration of parallel manipulators with pseudoerror theory and cooperative coevolutionary network,” IEEE Trans. Ind. Electron., vol. 59, no. 8, pp. 3221–3231, Aug. 2012. doi: 10.1109/TIE.2011.2166229
    A. Joubair, M. Slamani, and I. A. Bonev, “Kinematic calibration of a five-bar planar parallel robot using all working modes,” Robot. Comput.-Integr. Manuf., vol. 29, no. 4, pp. 15–25, Aug. 2013. doi: 10.1016/j.rcim.2012.10.002
    M. Neubauer, H. Gattringer, A. Müller, A. M. Steinhauser, and W. Höbarth, “A two-stage calibration method for industrial robots with joint and drive flexibilities,” Mech. Sci., vol. 6, no. 2, pp. 191–201, Sep. 2015. doi: 10.5194/ms-6-191-2015
    J. F. Jin and N. Gans, “Parameter identification for industrial robots with a fast and robust trajectory design approach,” Robot. Comput.-Integr. Manuf., vol. 31, pp. 21–29, Feb. 2015. doi: 10.1016/j.rcim.2014.06.004
    Y. Cho, H. M. Do, and J. Cheong, “Screw based kinematic calibration method for robot manipulators with joint compliance using circular point analysis,” Robot. Comput.-Integr. Manuf., vol. 60, pp. 63–76, Dec. 2019. doi: 10.1016/j.rcim.2018.08.001
    J. H. Li, A. Ito, H. Yaguchi, and Y. Maeda, “Simultaneous kinematic calibration, localization, and mapping (SKCLAM) for industrial robot manipulators,” Adv. Robot., vol. 33, no. 23, pp. 1225–1234, Feb. 2019. doi: 10.1080/01691864.2019.1689166
    G. L. Du and P. Zhang, “Online robot calibration based on vision measurement,” Robot. Comput.-Integr. Manuf., vol. 29, no. 6, pp. 484–492, Dec. 2013. doi: 10.1016/j.rcim.2013.05.003
    T. S. Lembono, F. Suárez-Ruiz, and Q. C. Pham, “SCALAR: Simultaneous calibration of 2-D laser and robot kinematic parameters using planarity and distance constraints,” IEEE Trans. Autom. Sci. Eng., vol. 16, no. 4, pp. 1971–1979, Oct. 2019. doi: 10.1109/TASE.2019.2918141
    G. Xiong, Y. Ding, L. M. Zhu, and C. Y. Su, “A product-of-exponential-based robot calibration method with optimal measurement configurations,” Int. J. Adv. Robot. Syst., vol. 14, no. 6, pp. 1–12, Nov. 2017.
    Y. Guo, S. B. Yin, Y. J. Ren, J. G. Zhu, S. R. Yang, and S. H. Ye, “A multilevel calibration technique for an industrial robot with parallelogram mechanism,” Precis. Eng., vol. 40, pp. 261–272, Apr. 2015. doi: 10.1016/j.precisioneng.2015.01.001
    J. Santolaria, J. Conte, M. Pueo, and C. Javierre, “Rotation error modeling and identification for robot kinematic calibration by circle point method,” Metrol. Meas. Syst., vol. 21, no. 1, pp. 85–98, Feb. 2014. doi: 10.2478/mms-2014-0009
    J. F. Peng, Y. Ding, G. Zhang, and H. Ding, “An enhanced kinematic model for calibration of robotic machining systems with parallelogram mechanisms,” Robot. Comput.-Integr. Manuf., vol. 59, pp. 92–103, Oct. 2019. doi: 10.1016/j.rcim.2019.03.008
    H. R. Zhong, C. H. Hu, X. Y. Li, L. Gao, B. Zeng, and H. Z. Dong, “Kinematic calibration method for a two-segment hydraulic leg based on an improved whale swarm algorithm,” Robot. Comput.-Integr. Manuf., vol. 59, pp. 361–372, Oct. 2019. doi: 10.1016/j.rcim.2019.05.002
    L. Y. Kong, G. L. Chen, Z. Zhang, and H. Wang, “Kinematic calibration and investigation of the influence of universal joint errors on accuracy improvement for a 3-DOF parallel manipulator,” Robot. Comput.-Integr. Manuf., vol. 49, pp. 388–397, Feb. 2018. doi: 10.1016/j.rcim.2017.08.002
    W. D. Wang, H. J. Song, Z. Y. Yan, L. N. Sun, and Z. J. Du, “A universal index and an improved PSO algorithm for optimal pose selection in kinematic calibration of a novel surgical robot,” Robot. Comput.-Integr. Manuf., vol. 50, pp. 90–101, Apr. 2018. doi: 10.1016/j.rcim.2017.09.011
    L. F. Zhao, A. Joubair, P. Bigras, and I. A. Bonev, “Metrological evaluation of a novel medical robot and its kinematic calibration,” Int. J. Adv. Robot. Syst., vol. 12, no. 9, pp. 1–13, Sep. 2015.
    X. L. Shan and G. Cheng, “Structural error identification and kinematic accuracy analysis of a 2(3PUS+S) parallel manipulator,” Measurement, vol. 140, pp. 22–28, Jul. 2019. doi: 10.1016/j.measurement.2019.03.039
    S. S. He, L. Ma, C. Y. Yan, C. H. Lee, and P. C. Hu, “Multiple location constraints based industrial robot kinematic parameter calibration and accuracy assessment,” Int. J. Adv. Manuf. Technol., vol. 102, no. 5, pp. 1037–1050, Jun. 2019.
    Z. H. Wang, H. Xu, G. D. Chen, R. C. Sun, and L. N. Sun, “A distance error based industrial robot kinematic calibration method,” Ind. Robot., vol. 41, no. 5, pp. 439–446, Aug. 2014. doi: 10.1108/IR-04-2014-0319
    X. Y. Chen, Q. J. Zhang, and Y. L. Sun, “Non-kinematic calibration of industrial robots using a rigid-flexible coupling error model and a full pose measurement method,” Robot. Comput.-Integr. Manuf., vol. 57, pp. 46–58, Jun. 2019. doi: 10.1016/j.rcim.2018.07.002
    J. M. Ahola, T. Seppälä, J. Koskinen, and T. Heikkilä, “Calibration of the pose parameters between coupled 6-axis F/T sensors in robotics applications,” Robot. Auton. Syst., vol. 89, pp. 1–8, 2017. doi: 10.1016/j.robot.2016.11.020
    F. C. Li, Q. Zeng, K. F. Ehmann, J. Cao, and T. M. Li, “A calibration method for overconstrained spatial translational parallel manipulators,” Robot. Comput.-Integr. Manuf., vol. 57, pp. 241–254, Jun. 2019. doi: 10.1016/j.rcim.2018.12.002
    L. Wang and N. Simaan, “Geometric calibration of continuum robots: Joint space and equilibrium shape deviations,” IEEE Trans. Robot., vol. 35, no. 2, pp. 387–402, Apr. 2019. doi: 10.1109/TRO.2018.2881049
    Z. X. Xie, P. F. Zong, P. Yao, and P. Ren, “Calibration of 6-DOF industrial robots based on line structured light,” Optik, vol. 183, pp. 1166–1178, Apr. 2019. doi: 10.1016/j.ijleo.2019.02.069
    G. Chen, L. Wang, B. N. Yuan, and D. Liu, “Configuration optimization for manipulator kinematic calibration based on comprehensive quality index,” IEEE Access, vol. 7, pp. 50179–50197, Apr. 2019. doi: 10.1109/ACCESS.2019.2910325
    Q. D. Zhu, X. R. Xie, C. Li, G. H. Xia, and Q. Liu, “Kinematic self-calibration method for dual-manipulators based on optical axis constraint,” IEEE Access, vol. 7, pp. 7768–7782, Jan. 2019. doi: 10.1109/ACCESS.2018.2890123
    Y. Qiao, Y. P. Chen, B. Chen, and J. M. Xie, “A novel calibration method for multi-robots system utilizing calibration model without nominal kinematic parameters,” Precis. Eng., vol. 50, pp. 211–221, Oct. 2017. doi: 10.1016/j.precisioneng.2017.05.009
    T. Sun, B. B. Lian, J. T. Zhang, and Y. M. Song, “Kinematic calibration of a 2-DoF over-constrained parallel mechanism using real inverse kinematics,” IEEE Access, vol. 6, pp. 67752–67761, Oct. 2018. doi: 10.1109/ACCESS.2018.2878976
    Y. Jiang, T. M. Li, L. P. Wang, and F. F. Chen, “Kinematic accuracy improvement of a novel smart structure-based parallel kinematic machine,” IEEE/ASME Trans. Mech., vol. 23, no. 1, pp. 469–481, Feb. 2018. doi: 10.1109/TMECH.2017.2756348
    F. Campisano, A. A. Remirez, S. Caló, J. H. Chandler, K. L. Obstein, R. J. Webster, and P. Valdastri, “Online disturbance estimation for improving kinematic accuracy in continuum manipulators,” IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 2642–2649, Feb. 2020. doi: 10.1109/LRA.2020.2972880
    C. T. Mao, S. Li, Z. W. Chen, X. Zhang, and C. Li, “Robust kinematic calibration for improving collaboration accuracy of dual-arm manipulators with experimental validation,” Measurement, vol. 155, Article ID 107524, Apr. 2020.
    F. W. Yin, W. J. Tian, H. T. Liu, T. Huang, and D. G. Chetwynd, “A screw theory based approach to determining the identifiable parameters for calibration of parallel manipulators,” Mech. Mach. Theory, vol. 145, Article ID 103665, Mar. 2020.
    T. Chuthai, M. O. T. Cole, T. Wongratanaphisan, and P. Puangmali, “Adaptive kinematic mapping based on chebyshev interpolation: Application to flexure-jointed micromanipulator control,” IEEE/ASME Trans. Mech., vol. 25, no. 1, pp. 118–129, Feb. 2020. doi: 10.1109/TMECH.2019.2960303
    J. He, Q. Y. Ding, F. Gao, and H. B. Zhang, “Kinematic calibration methodology of hybrid manipulator containing parallel topology with main limb,” Measurement, vol. 152, Article ID 107334, Feb. 2020.
    L. Huang, M. C. Zhou, K. R. Hao, and E. Hou, “A survey of multi-robot regular and adversarial patrolling,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 4, pp. 894–903, Jun. 2019. doi: 10.1109/JAS.2019.1911537
    Y. X. Wang, Z. W. Chen, H. F. Zu, X. Zhang, C. T. Mao, and Z. R. Wang, “Improvement of heavy load robot positioning accuracy by combining a model-based identification for geometric parameters and an optimized neural network for the compensation of nongeometric errors,” Complexity, vol. 2020, Article ID 5896813, Jan. 2020.
    S. D. Li, Z. J. Du, and H. J. Yu, “A robot-assisted spine surgery system based on intraoperative 2D fluoroscopy navigation,” IEEE Access, vol. 8, pp. 51786–51802, Mar. 2020. doi: 10.1109/ACCESS.2020.2979993
    T. Bentaleb and J. Iqbal, “On the improvement of calibration accuracy of parallel robots-modeling and optimization,” J. Theor. Appl. Mech., vol. 58, no. 1, pp. 261–272, Jan. 2020. doi: 10.15632/jtam-pl/115863
    D. Zhang, H. Yuan, and Z. C. Cao, “Environmental adaptive control of a snake-like robot with variable stiffness actuators,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 3, pp. 745–751, May 2020. doi: 10.1109/JAS.2020.1003144
    L. Li, H. Ding, and G. Z. Wang, “Kinematics parameter identification and accuracy evaluation method for neurosurgical robot,” J. Biomed. Eng., vol. 36, no. 6, pp. 994–1002, Dec. 2019.
    D. D. Chen, T. M. Wang, P. J. Yuan, N. Sun, and H. Y. Tang, “A positional error compensation method for industrial robots combining error similarity and radial basis function neural network,” Meas. Sci. Technol., vol. 30, no. 12, Article ID 125010, Sep. 2019.
    D. Willi and S. Guillaume, “Calibration of a six-axis robot for GNSS antenna phase center estimation,” J. Surv. Eng., vol. 14, no. 4, Sep. 2019.
    A. Xi, T. W. Mudiyanselage, D. Tao, and C. Chen, “Balance control of a biped robot on a rotating platform based on efficient reinforcement learning,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 4, pp. 938–951, Jul. 2019. doi: 10.1109/JAS.2019.1911567
    L. Wu, J. L. Wang, L. Qi, K. Y. Wu, H. L. Ren, and M. Q. H. Meng, “Simultaneous hand-eye, tool-flange, and robot-robot calibration for comanipulation by solving the AXB=YCZ problem,” IEEE Trans. Robot., vol. 32, no. 2, pp. 413–428, Apr. 2016. doi: 10.1109/TRO.2016.2530079
    H. B. Wang, T. Q. Gao, J. Kinugawa, and K. Kosuge, “Finding measurement configurations for accurate robot calibration: Validation with a cable-driven robot,” IEEE Trans. Robot., vol. 33, no. 5, pp. 1156–1169, Oct. 2017. doi: 10.1109/TRO.2017.2707562
    A. Censi, A. Franchi, L. Marchionni, and G. Oriolo, “Simultaneous calibration of odometry and sensor parameters for mobile robots,” IEEE Trans. Robot., vol. 29, no. 2, pp. 475–492, Apr. 2013. doi: 10.1109/TRO.2012.2226380
    M. Boukens, A. Boukabou, and M. Chadli., “A real time self-tuning motion controller for mobile robot systems,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 84–96, Jan. 2019. doi: 10.1109/JAS.2018.7511216
    D. Son, X. G. Dong, and M. Sitti, “A simultaneous calibration method for magnetic robot localization and actuation systems,” IEEE Trans. Robot., vol. 35, no. 2, pp. 343–352, Apr. 2019. doi: 10.1109/TRO.2018.2885218
    C. Jiang and S. Ueno, “Posture maintenance control of 2-link object by nonprehensile two-cooperative-arm robot without compensating friction,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 6, pp. 1397–1403, Nov. 2019.
    T. Sun, B. B. Lian, S. F. Yang, and Y. M. Song, “Kinematic calibration of serial and parallel robots based on finite and instantaneous screw theory,” IEEE Trans. Robot., vol. 36, no. 3, pp. 816–834, Jun. 2020. doi: 10.1109/TRO.2020.2969028
    N. Tan, C. Clévy, G. J. Laurent, P. Sandoz, and N. Chaillet, “Accuracy quantification and improvement of serial micropositioning robots for in-plane motions,” IEEE Trans. Robot., vol. 31, no. 6, pp. 1497–1507, Dec. 2015. doi: 10.1109/TRO.2015.2498301
    J. Kang and N. L. Doh, “Full-DOF calibration of a rotating 2-D LIDAR with a simple plane measurement,” IEEE Trans. Robot., vol. 32, no. 5, pp. 1245–1263, Oct. 2016. doi: 10.1109/TRO.2016.2596769
    H. Bettahar, O. Lehmann, C. Clevy, N. Courjal, and P. Lutz, “Photo-robotic extrinsic parameters calibration of 6-DOF robot for high positioning accuracy,” IEEE/ASME Trans. Mech., vol. 25, no. 2, pp. 616–626, Apr. 2020. doi: 10.1109/TMECH.2020.2965255
    K. Majd, M. Razeghi-Jahromi, and A. Homaifar, “A stable analytical solution method for car-like robot trajectory tracking and optimization,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 39–47, Jan. 2020. doi: 10.1109/JAS.2019.1911816
    J. Liu, Q. Gao, Z. Liu, and Y. Li, “Attitude control for astronaut assisted robot in the space station,” Int. J. Control Autom. Syst., vol. 14, no. 4, pp. 1082–1094, Aug. 2016. doi: 10.1007/s12555-014-0568-4
    M. S. Erden and B. Mari, “Assisting manual welding with robot,” Robot. Comput.-Integr. Manuf., vol. 27, no. 4, pp. 818–828, Aug. 2011. doi: 10.1016/j.rcim.2011.01.003
    H. Y. Yu, S. N. Huang, G. Chen, Y. P. Pan, and Z. Guo, “Human-robot interaction control of rehabilitation robots with series elastic actuators,” IEEE Trans. Robot., vol. 31, no. 5, pp. 1089–1100, Oct. 2015. doi: 10.1109/TRO.2015.2457314
    B. D. Argall and A. G. Billard, “A survey of tactile human-robot interactions,” Robot. Auton. Syst., vol. 58, no. 10, pp. 1159–1176, Oct. 2010. doi: 10.1016/j.robot.2010.07.002
    Y. Li and S. Sam Ge, “Impedance learning for robots interacting with unknown environments,” IEEE Trans. Control Syst. Technol., vol. 22, no. 4, pp. 1422–1432, Jul. 2014. doi: 10.1109/TCST.2013.2286194
    I. Ranatunga, F. L. Lewis, D. O. Popa, and S. M. Tousif, “Adaptive admittance control for human-robot interaction using model reference design and adaptive inverse filtering,” IEEE Trans. Control Syst. Technol., vol. 25, no. 1, pp. 278–285, Jan. 2017. doi: 10.1109/TCST.2016.2523901
    C. Premachandra, M. Otsuka, R. Gohara, T. Ninomiya, and K. Kato, “A study on development of a hybrid aerial/terrestrial robot system for avoiding ground obstacles by flight,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 327–336, Jan. 2019. doi: 10.1109/JAS.2018.7511258
    P. E. Dupont, J. Lock, B. Itkowitz, and E. Butler, “Design and control of concentric-tube robots,” IEEE Trans. Robot., vol. 26, no. 2, pp. 209–225, Apr. 2010. doi: 10.1109/TRO.2009.2035740
    D. C. Rucker, B. A. Jones, and R. J. Webster III, “A geometrically exact model for externally loaded concentric-tube continuum robots,” IEEE Trans. Robot., vol. 26, no. 5, pp. 769–780, Oct. 2010. doi: 10.1109/TRO.2010.2062570
    K. Leibrandt, C. Bergeles, and G. Z. Yang, “Concentric tube robots: Rapid, stable path-planning and guidance for surgical use,” IEEE Robot. Autom. Mag., vol. 24, no. 2, pp. 42–53, Jun. 2017. doi: 10.1109/MRA.2017.2680546
    K. Y. Wu, G. N. Zhu, L. Wu, W. C. Gao, S. Song, C. M. Lim, and H. L. Ren, “Safety-enhanced model-free visual servoing for continuum tubular robots through singularity avoidance in confined environments,” IEEE Access, vol. 7, pp. 21539–21558, Jan. 2019. doi: 10.1109/ACCESS.2019.2891952
    A. V. Kudryavtsev, M. T. Chikhaoui, A. Liadov, P. Rougeot, F. Spindler, K. Rabenorosoa, J. Burgner-Kahrs, B. Tamadazte, and N. Andreff , “Eye-in-hand visual servoing of concentric tube robots,” IEEE Robot. Autom. Lett., vol. 3, no. 3, pp. 2315–2321, Jul. 2018. doi: 10.1109/LRA.2018.2807592
    M. M. Marinho, B. V. Adorno, K. Harada, and M. Mitsuishi, “Dynamic active constraints for surgical robots using vector-field inequalities,” IEEE Trans. Robot., vol. 35, no. 5, pp. 1166–1185, Oct. 2019. doi: 10.1109/TRO.2019.2920078
    Z. Pan, J. Polden, N. Larkin, S. Van Duin, and J. Norrish, “Recent progress on programming methods for industrial robots,” Robot. Comput.-Integr. Manuf., vol. 28, no. 2, pp. 87–94, Apr. 2012. doi: 10.1016/j.rcim.2011.08.004
    L. B. Zhang, Z. J. Li, and C. G. Yang, “Adaptive neural network based variable stiffness control of uncertain robotic systems using disturbance observer,” IEEE Trans. Ind. Electron., vol. 64, no. 3, pp. 2236–2245, Mar. 2017. doi: 10.1109/TIE.2016.2624260
    K. M. Zheng, Y. M. Hu, and B. Wu, “Model-free development of control systems for a multi-degree-of-freedom robot,” Mechatronics, vol. 53, pp. 262–276, Aug. 2018. doi: 10.1016/j.mechatronics.2018.06.015
    X. L. Chen, H. Zhao, S. C. Zhen, and H. Sun, “Adaptive robust control for a lower limbs rehabilitation robot running under passive training mode,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 2, pp. 493–502, Mar. 2019. doi: 10.1109/JAS.2019.1911402
    Z. T. Fu, J. B. Pan, E. Spyrakos-Papastavridis, X. B. Chen, and M. Li, “A dual quaternion-based approach for coordinate calibration of dual robots in collaborative motion,” IEEE Robot. Autom. Lett., vol. 5, no. 3, pp. 4086–4093, Jul. 2020. doi: 10.1109/LRA.2020.2988407


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (1637) PDF downloads(188) Cited by()


    • The error parameter identification of serial and parallel robots is summarized. The parameter identification algorithms of complex serial and parallel robot are not involved, then the parameter identification algorithms of simple serial and parallel robot are introduced, the advantages and disadvantages of these algorithms are analyzed. In addition, the research results of these calibration algorithms and the types of calibration errors are introduced.
    • The robot kinematics and dynamics models, the parameter identification algorithms, calibration process and some classic applications of robot calibration are introduced, and the related research work at home and abroad is reviewed. Then a new robot calibration method is discussed, which can solve the problems of measurement noise and external constraints.
    • Recently, with the development of robot calibration research, some research results have been achieved in geometric parameter calibration and non-geometric parameter calibration. However, there are still some problems worth exploring. This paper discusses the challenges in robot calibration and introduces the future development trend of robot calibration technology, which provides new ideas for future research.


    DownLoad:  Full-Size Img  PowerPoint