IEEE/CAA Journal of Automatica Sinica
Citation:  Zhibin Li, Shuai Li and Xin Luo, "An Overview of Calibration Technology of Industrial Robots," IEEE/CAA J. Autom. Sinica, vol. 8, no. 1, pp. 2336, Jan. 2021. doi: 10.1109/JAS.2020.1003381 
[1] 
Y. H. Gan, J. J. Duan, and X. Z. Dai, “A calibration method of robot kinematic parameters by drawstring displacement sensor,” Int. J. Adv. Robot. Syst., vol. 16, no. 5, pp. 1–9, Sept.–Oct. 2019.

[2] 
G. Chen, T. Li, M. Chu, J. Q. Xuan, and S. H. Xu, “Review on kinematics calibration technology of serial robots,” Int. J. Precis. Eng. Manuf., vol. 15, no. 8, pp. 1759–1774, Aug. 2014. doi: 10.1007/s1254101405281

[3] 
I. W. Park, B. J. Lee, S. H. Cho, Y. D. Hong, and J. H. Kim, “Laserbased kinematic calibration of robot manipulator using differential kinematics,” IEEE/ASME Trans. Mech., vol. 17, no. 6, pp. 1059–1067, Dec. 2012. doi: 10.1109/TMECH.2011.2158234

[4] 
H. X. Wang, S. H. Shen, and X. Lu, “A screw axis identification method for serial robot calibration based on the POE model,” Ind. Robot., vol. 39, no. 2, pp. 146–153, Mar. 2012. doi: 10.1108/01439911211201609

[5] 
T. Li, K. Sun, Z. W. Xie, and H. Liu, “Optimal measurement configurations for kinematic calibration of sixDOF serial robot,” J. Cent. South Univ. Technol., vol. 18, no. 3, pp. 618–626, Jun. 2011. doi: 10.1007/s117710110739x

[6] 
H. N. Nguyen, J. Zhou, and H. J. Kang, “A calibration method for enhancing robot accuracy through integration of an extended Kalman filter algorithm and an artificial neural network,” Neurocomputing, vol. 151, pp. 996–1005, Mar. 2015. doi: 10.1016/j.neucom.2014.03.085

[7] 
R. B. He, Y. J. Zhao, S. N. Yang, and S. Z. Yang, “Kinematicparameter identification for serialrobot calibration based on POE formula,” IEEE Trans. Robot., vol. 26, no. 3, pp. 411–423, Jun. 2010. doi: 10.1109/TRO.2010.2047529

[8] 
A. Nubiola and I. A. Bonev, “Absolute calibration of an ABB IRB 1600 robot using a laser tracker,” Robot. Comput.Integr. Manuf., vol. 29, no. 1, pp. 236–245, Feb. 2013. doi: 10.1016/j.rcim.2012.06.004

[9] 
Z. H. Jiang, W. G. Zhou, H. Li, Y. Mo, W. C. Ni, and Q. Huang, “A new kind of accurate calibration method for robotic kinematic parameters based on the extended Kalman and particle filter algorithm,” IEEE Trans. Ind. Electron., vol. 65, no. 4, pp. 3337–3345, Apr. 2018. doi: 10.1109/TIE.2017.2748058

[10] 
J. Santolaria, F. J. Brosed, J. Velázquez, and R. Jiménez, “Selfalignment of onboard measurement sensors for robot kinematic calibration,” Precis. Eng., vol. 37, no. 3, pp. 699–710, Jul. 2013. doi: 10.1016/j.precisioneng.2013.02.003

[11] 
R. B. He, X. W. Li, T. L. Shi, B. Wu, Y. J. Zhao, F. L. Han, S. N. Yang, S. H. Huang, and S. Z. Yang, “A kinematic calibration method based on the product of exponentials formula for serial robot using position measurements,” Robotica, vol. 33, no. 6, pp. 1295–1313, Jul. 2015. doi: 10.1017/S026357471400071X

[12] 
L. Wu, X. D. Yang, K. Chen, and H. L. Ren, “A minimal POEbased model for robotic kinematic calibration with only position measurements,” IEEE Trans. Autom. Sci. Eng., vol. 12, no. 2, pp. 758–763, Apr. 2015. doi: 10.1109/TASE.2014.2328652

[13] 
X. D. Yang, L. Wu, J. Q. Li, and K. Chen, “A minimal kinematic model for serial robot calibration using POE formula,” Robot. Comput.Integr. Manuf., vol. 30, no. 3, pp. 326–334, Jun. 2014. doi: 10.1016/j.rcim.2013.11.002

[14] 
T. Messay, R. Ordóñez, and E. Marcil, “Computationally efficient and robust kinematic calibration methodologies and their application to industrial robots,” Robot. Comput.Integr. Manuf., vol. 37, pp. 33–48, Feb. 2016. doi: 10.1016/j.rcim.2015.06.003

[15] 
T. Sun, Y. P. Zhai, Y. M. Song, and J. T. Zhang, “Kinematic calibration of a 3DOF rotational parallel manipulator using laser tracker,” Robot. Comput.Integr. Manuf., vol. 41, pp. 78–91, Oct. 2016. doi: 10.1016/j.rcim.2016.02.008

[16] 
Y. M. Song, J. T. Zhang, B. B. Lian, and T. Sun, “Kinematic calibration of a 5DOF parallel kinematic machine,” Precis. Eng., vol. 45, pp. 242–261, Jul. 2016. doi: 10.1016/j.precisioneng.2016.03.002

[17] 
G. L. Du and P. Zhang, “Online serial manipulator calibration based on multisensory process via extended Kalman and particle filters,” IEEE Trans. Ind. Electron., vol. 61, no. 12, pp. 6852–6859, Dec. 2014. doi: 10.1109/TIE.2014.2314051

[18] 
C. T. Mao, S. Li, Z. W. Chen, H. F. Zu, Z. R. Wang, and Y. X. Wang, “A novel algorithm for robust calibration of kinematic manipulators and its experimental validation,” IEEE Access, vol. 7, pp. 90487–90496, Jul. 2019. doi: 10.1109/ACCESS.2019.2926801

[19] 
A. Joubair and I. A. Bonev, “Kinematic calibration of a sixaxis serial robot using distance and sphere constraints,” Int. J. Adv. Manuf. Technol., vol. 77, no. 1–4, pp. 515–523, Mar. 2015. doi: 10.1007/s0017001464485

[20] 
A. Joubair and A. Bonev, “Comparison of the efficiency of five observability indices for robot calibration,” Mech. Mach. Theory, vol. 70, pp. 254–265, Dec. 2013. doi: 10.1016/j.mechmachtheory.2013.07.015

[21] 
J. Zhou, H. N. Nguyen, and H. J. Kang, “Selecting optimal measurement poses for kinematic calibration of industrial robots,” Adv. Mech. Eng., vol. 2014, Article ID 291389, Jan. 2014.

[22] 
G. L. Chen, H. Wang, and Z. Q. Lin, “Determination of the identifiable parameters in robot calibration based on the POE formula,” IEEE Trans. Robot., vol. 30, no. 5, pp. 1066–1077, Oct. 2014. doi: 10.1109/TRO.2014.2319560

[23] 
P. J. Bai, J. P. Mei, T. Huang, and D. G. Chetwynd, “Kinematic calibration of Delta robot using distance measurements,” Proc. Inst. Mech. Eng. C:J. Mech. Eng. Sci., vol. 230, no. 3, pp. 414–424, Feb. 2016. doi: 10.1177/0954406215603739

[24] 
Z. T. Fu, J. S. Dai, K. Yang, X. B. Chen, and P. LópezCustodio, “Analysis of unified error model and simulated parameters calibration for robotic machining based on Lie theory,” Robot. Comput.Integr. Manuf., vol. 61, Article ID 101855, Feb. 2020.

[25] 
A. Filion, A. Joubair, A. S. Tahan, and I. A. Bonev, “Robot calibration using a portable photogrammetry system,” Robot. Comput.Integr. Manuf., vol. 49, pp. 77–87, Feb. 2018. doi: 10.1016/j.rcim.2017.05.004

[26] 
K. Kamali and I. A. Bonev, “Optimal experiment design for elastogeometrical calibration of industrial robots,” IEEE/ASME Trans. Mech., vol. 24, no. 6, pp. 2733–2744, Dec. 2019. doi: 10.1109/TMECH.2019.2944428

[27] 
C. Escande, T. Chettibi, R. Merzouki, V. Coelen, and P. M. Pathak, “Kinematic calibration of a multisection bionic manipulator,” IEEE/ASME Trans. Mech., vol. 20, no. 2, pp. 663–674, Apr. 2015. doi: 10.1109/TMECH.2014.2313741

[28] 
Q. X. Jia, S. W. Wang, G. Chen, L. Wang, and H. X. Sun, “A novel optimal design of measurement configurations in robot calibration,” Math. Problems Eng., vol. 2018, Article ID 4689710, Apr. 2018.

[29] 
L. Ma, P. Bazzoli, P. M. Sammons, R. G. Landers, and D. A. Bristow, “Modeling and calibration of highorder jointdependent kinematic errors for industrial robots,” Robot. Comput.Integr. Manuf., vol. 50, pp. 153–167, Apr. 2018. doi: 10.1016/j.rcim.2017.09.006

[30] 
C. Li, Y. Q. Wu, H. Löwe, and Z. X. Li, “POEbased robot kinematic calibration using axis configuration space and the adjoint error model,” IEEE Trans. Robot., vol. 32, no. 5, pp. 1264–1279, Oct. 2016. doi: 10.1109/TRO.2016.2593042

[31] 
J. Santolaria, A. Brau, J. Velázquez, and J. J. Aguilar, “A selfcentering active probing technique for kinematic parameter identification and verification of articulated arm coordinate measuring machines,” Meas. Sci. Technol., vol. 21, no. 5, Article ID. 055101, Mar. 2010.

[32] 
C. F. Hong and S. Ibaraki, “Noncontact Rtest with laser displacement sensors for error calibration of fiveaxis machine tools,” Precis. Eng., vol. 37, no. 1, pp. 159–171, Jan. 2013. doi: 10.1016/j.precisioneng.2012.07.012

[33] 
A. Klimchik, B. Furet, S. Caro, and A. Pashkevich, “Identification of the manipulator stiffness model parameters in industrial environment,” Mech. Mach. Theory, vol. 90, pp. 1–22, Aug. 2015. doi: 10.1016/j.mechmachtheory.2015.03.002

[34] 
G. L. Du, P. Zhang, and D. Li, “Online robot calibration based on hybrid sensors using Kalman filters,” Robot. Comput.Integr. Manuf., vol. 31, pp. 91–100, Feb. 2015. doi: 10.1016/j.rcim.2014.08.002

[35] 
M. Abtahi, H. Pendar, A. Alasty, and G. Vossoughi, “Experimental kinematic calibration of parallel manipulators using a relative position error measurement system,” Robot. Comput.Integr. Manuf., vol. 26, no. 6, pp. 799–804, Dec. 2010. doi: 10.1016/j.rcim.2010.05.007

[36] 
W. Wang, F. Liu, and C. Yun, “Calibration method of robot base frame using unit quaternion form,” Precis. Eng., vol. 41, pp. 47–54, Jul. 2015. doi: 10.1016/j.precisioneng.2015.01.005

[37] 
A. Joubair and I. A. Bonev, “Nonkinematic calibration of a sixaxis serial robot using planar constraints,” Precis. Eng., vol. 40, pp. 325–333, Apr. 2015. doi: 10.1016/j.precisioneng.2014.12.002

[38] 
Y. E. Wu, A. Klimchik, S. Caro, B. Furet, and A. Pashkevich, “Geometric calibration of industrial robots using enhanced partial pose measurements and design of experiments,” Robot. Comput.Integr. Manuf., vol. 35, pp. 151–168, Oct. 2015. doi: 10.1016/j.rcim.2015.03.007

[39] 
A. Joubair, M. Slamani, and I. A. Bonev, “A novel XYTheta precision table and a geometric procedure for its kinematic calibration,” Robot. Comput.Integr. Manuf., vol. 28, no. 1, pp. 57–65, Feb. 2012. doi: 10.1016/j.rcim.2011.06.006

[40] 
S. Marie, E. Courteille, and P. Maurine, “Elastogeometrical modeling and calibration of robot manipulators: application to machining and forming applications,” Mech. Mach. Theory, vol. 69, pp. 13–43, Nov. 2013. doi: 10.1016/j.mechmachtheory.2013.05.003

[41] 
J. Santolaria and M. Ginés, “Uncertainty estimation in robot kinematic calibration,” Robot. Comput.Integr. Manuf., vol. 29, no. 2, pp. 370–384, 2013. doi: 10.1016/j.rcim.2012.09.007

[42] 
A. Joubair, M. Slamani, and I. A. Bonev, “Kinematic calibration of a 3dof planar parallel robot,” Ind. Robot., vol. 39, no. 4, pp. 392–400, Jun. 2012. doi: 10.1108/01439911211227971

[43] 
J. Wu, J. S. Wang, and Z. You, “An overview of dynamic parameter identification of robots,” Robot. Comput.Integr. Manuf., vol. 26, no. 5, pp. 414–419, Oct. 2010. doi: 10.1016/j.rcim.2010.03.013

[44] 
M. Gautier, A. Janot, and P. O. Vandanjon, “A new closedloop output error method for parameter identification of robot dynamics,” IEEE Trans. Control Syst. Technol., vol. 21, no. 2, pp. 428–444, Mar. 2013. doi: 10.1109/TCST.2012.2185697

[45] 
W. J. Tian, M. W. Mou, J. H. Yang, and F. W. Yin, “Kinematic calibration of a 5DOF hybrid kinematic machine tool by considering the illposed identification problem using regularisation method,” Robot. Comput.Integr. Manuf., vol. 60, pp. 49–62, Dec. 2019. doi: 10.1016/j.rcim.2019.05.016

[46] 
Y. Jiang, T. M. Li, L. P. Wang, and F. F. Chen, “Kinematic error modeling and identification of the overconstrained parallel kinematic machine,” Robot. Comput.Integr. Manuf., vol. 49, pp. 105–119, Feb. 2018. doi: 10.1016/j.rcim.2017.06.001

[47] 
S. L. Zhang, S. Wang, F. S. Jing, and M. Tan, “A sensorless hand guiding scheme based on model identification and control for industrial robot,” IEEE Trans. Ind. Inform., vol. 15, no. 9, pp. 5204–5213, Sep. 2019. doi: 10.1109/TII.2019.2900119

[48] 
G. L. Wu and G. L. Shi, “Experimental statics calibration of a multiconstraint parallel continuum robot,” Mech. Mach. Theory, vol. 136, pp. 72–85, Jun. 2019. doi: 10.1016/j.mechmachtheory.2019.02.013

[49] 
T. Huang, D. Zhao, F. W. Yin, W. J. Tian, and D. G. Chetwynd, “Kinematic calibration of a 6DOF hybrid robot by considering multicollinearity in the identification Jacobian,” Mech. Mach. Theory, vol. 131, pp. 371–384, Jan. 2019. doi: 10.1016/j.mechmachtheory.2018.10.008

[50] 
C. Fan, G. L. Zhao, J. Zhao, L. Zhang, and L. N. Sun, “Calibration of a parallel mechanism in a serialparallel polishing machine tool based on genetic algorithm,” Int. J. Adv. Manuf. Technol., vol. 81, no. 1, pp. 27–37, May 2015.

[51] 
P. Huang, J. S. Wang, L. P. Wang, and R. Yao, “Kinematical calibration of a hybrid machine tool with regularization method,” Int. J. Mach. Tools Manuf., vol. 51, no. 3, pp. 210–220, Mar. 2011. doi: 10.1016/j.ijmachtools.2010.11.009

[52] 
J. X. Fu, F. Gao, W. X. Chen, Y. Pan, and R. F. Lin, “Kinematic accuracy research of a novel sixdegreeoffreedom parallel robot with three legs,” Mech. Mach. Theory, vol. 102, pp. 86–102, Aug. 2016. doi: 10.1016/j.mechmachtheory.2016.03.022

[53] 
D. Zhang and Z. Gao, “Optimal kinematic calibration of parallel manipulators with pseudoerror theory and cooperative coevolutionary network,” IEEE Trans. Ind. Electron., vol. 59, no. 8, pp. 3221–3231, Aug. 2012. doi: 10.1109/TIE.2011.2166229

[54] 
A. Joubair, M. Slamani, and I. A. Bonev, “Kinematic calibration of a fivebar planar parallel robot using all working modes,” Robot. Comput.Integr. Manuf., vol. 29, no. 4, pp. 15–25, Aug. 2013. doi: 10.1016/j.rcim.2012.10.002

[55] 
M. Neubauer, H. Gattringer, A. Müller, A. M. Steinhauser, and W. Höbarth, “A twostage calibration method for industrial robots with joint and drive flexibilities,” Mech. Sci., vol. 6, no. 2, pp. 191–201, Sep. 2015. doi: 10.5194/ms61912015

[56] 
J. F. Jin and N. Gans, “Parameter identification for industrial robots with a fast and robust trajectory design approach,” Robot. Comput.Integr. Manuf., vol. 31, pp. 21–29, Feb. 2015. doi: 10.1016/j.rcim.2014.06.004

[57] 
Y. Cho, H. M. Do, and J. Cheong, “Screw based kinematic calibration method for robot manipulators with joint compliance using circular point analysis,” Robot. Comput.Integr. Manuf., vol. 60, pp. 63–76, Dec. 2019. doi: 10.1016/j.rcim.2018.08.001

[58] 
J. H. Li, A. Ito, H. Yaguchi, and Y. Maeda, “Simultaneous kinematic calibration, localization, and mapping (SKCLAM) for industrial robot manipulators,” Adv. Robot., vol. 33, no. 23, pp. 1225–1234, Feb. 2019. doi: 10.1080/01691864.2019.1689166

[59] 
G. L. Du and P. Zhang, “Online robot calibration based on vision measurement,” Robot. Comput.Integr. Manuf., vol. 29, no. 6, pp. 484–492, Dec. 2013. doi: 10.1016/j.rcim.2013.05.003

[60] 
T. S. Lembono, F. SuárezRuiz, and Q. C. Pham, “SCALAR: Simultaneous calibration of 2D laser and robot kinematic parameters using planarity and distance constraints,” IEEE Trans. Autom. Sci. Eng., vol. 16, no. 4, pp. 1971–1979, Oct. 2019. doi: 10.1109/TASE.2019.2918141

[61] 
G. Xiong, Y. Ding, L. M. Zhu, and C. Y. Su, “A productofexponentialbased robot calibration method with optimal measurement configurations,” Int. J. Adv. Robot. Syst., vol. 14, no. 6, pp. 1–12, Nov. 2017.

[62] 
Y. Guo, S. B. Yin, Y. J. Ren, J. G. Zhu, S. R. Yang, and S. H. Ye, “A multilevel calibration technique for an industrial robot with parallelogram mechanism,” Precis. Eng., vol. 40, pp. 261–272, Apr. 2015. doi: 10.1016/j.precisioneng.2015.01.001

[63] 
J. Santolaria, J. Conte, M. Pueo, and C. Javierre, “Rotation error modeling and identification for robot kinematic calibration by circle point method,” Metrol. Meas. Syst., vol. 21, no. 1, pp. 85–98, Feb. 2014. doi: 10.2478/mms20140009

[64] 
J. F. Peng, Y. Ding, G. Zhang, and H. Ding, “An enhanced kinematic model for calibration of robotic machining systems with parallelogram mechanisms,” Robot. Comput.Integr. Manuf., vol. 59, pp. 92–103, Oct. 2019. doi: 10.1016/j.rcim.2019.03.008

[65] 
H. R. Zhong, C. H. Hu, X. Y. Li, L. Gao, B. Zeng, and H. Z. Dong, “Kinematic calibration method for a twosegment hydraulic leg based on an improved whale swarm algorithm,” Robot. Comput.Integr. Manuf., vol. 59, pp. 361–372, Oct. 2019. doi: 10.1016/j.rcim.2019.05.002

[66] 
L. Y. Kong, G. L. Chen, Z. Zhang, and H. Wang, “Kinematic calibration and investigation of the influence of universal joint errors on accuracy improvement for a 3DOF parallel manipulator,” Robot. Comput.Integr. Manuf., vol. 49, pp. 388–397, Feb. 2018. doi: 10.1016/j.rcim.2017.08.002

[67] 
W. D. Wang, H. J. Song, Z. Y. Yan, L. N. Sun, and Z. J. Du, “A universal index and an improved PSO algorithm for optimal pose selection in kinematic calibration of a novel surgical robot,” Robot. Comput.Integr. Manuf., vol. 50, pp. 90–101, Apr. 2018. doi: 10.1016/j.rcim.2017.09.011

[68] 
L. F. Zhao, A. Joubair, P. Bigras, and I. A. Bonev, “Metrological evaluation of a novel medical robot and its kinematic calibration,” Int. J. Adv. Robot. Syst., vol. 12, no. 9, pp. 1–13, Sep. 2015.

[69] 
X. L. Shan and G. Cheng, “Structural error identification and kinematic accuracy analysis of a 2(3PUS+S) parallel manipulator,” Measurement, vol. 140, pp. 22–28, Jul. 2019. doi: 10.1016/j.measurement.2019.03.039

[70] 
S. S. He, L. Ma, C. Y. Yan, C. H. Lee, and P. C. Hu, “Multiple location constraints based industrial robot kinematic parameter calibration and accuracy assessment,” Int. J. Adv. Manuf. Technol., vol. 102, no. 5, pp. 1037–1050, Jun. 2019.

[71] 
Z. H. Wang, H. Xu, G. D. Chen, R. C. Sun, and L. N. Sun, “A distance error based industrial robot kinematic calibration method,” Ind. Robot., vol. 41, no. 5, pp. 439–446, Aug. 2014. doi: 10.1108/IR0420140319

[72] 
X. Y. Chen, Q. J. Zhang, and Y. L. Sun, “Nonkinematic calibration of industrial robots using a rigidflexible coupling error model and a full pose measurement method,” Robot. Comput.Integr. Manuf., vol. 57, pp. 46–58, Jun. 2019. doi: 10.1016/j.rcim.2018.07.002

[73] 
J. M. Ahola, T. Seppälä, J. Koskinen, and T. Heikkilä, “Calibration of the pose parameters between coupled 6axis F/T sensors in robotics applications,” Robot. Auton. Syst., vol. 89, pp. 1–8, 2017. doi: 10.1016/j.robot.2016.11.020

[74] 
F. C. Li, Q. Zeng, K. F. Ehmann, J. Cao, and T. M. Li, “A calibration method for overconstrained spatial translational parallel manipulators,” Robot. Comput.Integr. Manuf., vol. 57, pp. 241–254, Jun. 2019. doi: 10.1016/j.rcim.2018.12.002

[75] 
L. Wang and N. Simaan, “Geometric calibration of continuum robots: Joint space and equilibrium shape deviations,” IEEE Trans. Robot., vol. 35, no. 2, pp. 387–402, Apr. 2019. doi: 10.1109/TRO.2018.2881049

[76] 
Z. X. Xie, P. F. Zong, P. Yao, and P. Ren, “Calibration of 6DOF industrial robots based on line structured light,” Optik, vol. 183, pp. 1166–1178, Apr. 2019. doi: 10.1016/j.ijleo.2019.02.069

[77] 
G. Chen, L. Wang, B. N. Yuan, and D. Liu, “Configuration optimization for manipulator kinematic calibration based on comprehensive quality index,” IEEE Access, vol. 7, pp. 50179–50197, Apr. 2019. doi: 10.1109/ACCESS.2019.2910325

[78] 
Q. D. Zhu, X. R. Xie, C. Li, G. H. Xia, and Q. Liu, “Kinematic selfcalibration method for dualmanipulators based on optical axis constraint,” IEEE Access, vol. 7, pp. 7768–7782, Jan. 2019. doi: 10.1109/ACCESS.2018.2890123

[79] 
Y. Qiao, Y. P. Chen, B. Chen, and J. M. Xie, “A novel calibration method for multirobots system utilizing calibration model without nominal kinematic parameters,” Precis. Eng., vol. 50, pp. 211–221, Oct. 2017. doi: 10.1016/j.precisioneng.2017.05.009

[80] 
T. Sun, B. B. Lian, J. T. Zhang, and Y. M. Song, “Kinematic calibration of a 2DoF overconstrained parallel mechanism using real inverse kinematics,” IEEE Access, vol. 6, pp. 67752–67761, Oct. 2018. doi: 10.1109/ACCESS.2018.2878976

[81] 
Y. Jiang, T. M. Li, L. P. Wang, and F. F. Chen, “Kinematic accuracy improvement of a novel smart structurebased parallel kinematic machine,” IEEE/ASME Trans. Mech., vol. 23, no. 1, pp. 469–481, Feb. 2018. doi: 10.1109/TMECH.2017.2756348

[82] 
F. Campisano, A. A. Remirez, S. Caló, J. H. Chandler, K. L. Obstein, R. J. Webster, and P. Valdastri, “Online disturbance estimation for improving kinematic accuracy in continuum manipulators,” IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 2642–2649, Feb. 2020. doi: 10.1109/LRA.2020.2972880

[83] 
C. T. Mao, S. Li, Z. W. Chen, X. Zhang, and C. Li, “Robust kinematic calibration for improving collaboration accuracy of dualarm manipulators with experimental validation,” Measurement, vol. 155, Article ID 107524, Apr. 2020.

[84] 
F. W. Yin, W. J. Tian, H. T. Liu, T. Huang, and D. G. Chetwynd, “A screw theory based approach to determining the identifiable parameters for calibration of parallel manipulators,” Mech. Mach. Theory, vol. 145, Article ID 103665, Mar. 2020.

[85] 
T. Chuthai, M. O. T. Cole, T. Wongratanaphisan, and P. Puangmali, “Adaptive kinematic mapping based on chebyshev interpolation: Application to flexurejointed micromanipulator control,” IEEE/ASME Trans. Mech., vol. 25, no. 1, pp. 118–129, Feb. 2020. doi: 10.1109/TMECH.2019.2960303

[86] 
J. He, Q. Y. Ding, F. Gao, and H. B. Zhang, “Kinematic calibration methodology of hybrid manipulator containing parallel topology with main limb,” Measurement, vol. 152, Article ID 107334, Feb. 2020.

[87] 
L. Huang, M. C. Zhou, K. R. Hao, and E. Hou, “A survey of multirobot regular and adversarial patrolling,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 4, pp. 894–903, Jun. 2019. doi: 10.1109/JAS.2019.1911537

[88] 
Y. X. Wang, Z. W. Chen, H. F. Zu, X. Zhang, C. T. Mao, and Z. R. Wang, “Improvement of heavy load robot positioning accuracy by combining a modelbased identification for geometric parameters and an optimized neural network for the compensation of nongeometric errors,” Complexity, vol. 2020, Article ID 5896813, Jan. 2020.

[89] 
S. D. Li, Z. J. Du, and H. J. Yu, “A robotassisted spine surgery system based on intraoperative 2D fluoroscopy navigation,” IEEE Access, vol. 8, pp. 51786–51802, Mar. 2020. doi: 10.1109/ACCESS.2020.2979993

[90] 
T. Bentaleb and J. Iqbal, “On the improvement of calibration accuracy of parallel robotsmodeling and optimization,” J. Theor. Appl. Mech., vol. 58, no. 1, pp. 261–272, Jan. 2020. doi: 10.15632/jtampl/115863

[91] 
D. Zhang, H. Yuan, and Z. C. Cao, “Environmental adaptive control of a snakelike robot with variable stiffness actuators,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 3, pp. 745–751, May 2020. doi: 10.1109/JAS.2020.1003144

[92] 
L. Li, H. Ding, and G. Z. Wang, “Kinematics parameter identification and accuracy evaluation method for neurosurgical robot,” J. Biomed. Eng., vol. 36, no. 6, pp. 994–1002, Dec. 2019.

[93] 
D. D. Chen, T. M. Wang, P. J. Yuan, N. Sun, and H. Y. Tang, “A positional error compensation method for industrial robots combining error similarity and radial basis function neural network,” Meas. Sci. Technol., vol. 30, no. 12, Article ID 125010, Sep. 2019.

[94] 
D. Willi and S. Guillaume, “Calibration of a sixaxis robot for GNSS antenna phase center estimation,” J. Surv. Eng., vol. 14, no. 4, Sep. 2019.

[95] 
A. Xi, T. W. Mudiyanselage, D. Tao, and C. Chen, “Balance control of a biped robot on a rotating platform based on efficient reinforcement learning,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 4, pp. 938–951, Jul. 2019. doi: 10.1109/JAS.2019.1911567

[96] 
L. Wu, J. L. Wang, L. Qi, K. Y. Wu, H. L. Ren, and M. Q. H. Meng, “Simultaneous handeye, toolflange, and robotrobot calibration for comanipulation by solving the AXB=YCZ problem,” IEEE Trans. Robot., vol. 32, no. 2, pp. 413–428, Apr. 2016. doi: 10.1109/TRO.2016.2530079

[97] 
H. B. Wang, T. Q. Gao, J. Kinugawa, and K. Kosuge, “Finding measurement configurations for accurate robot calibration: Validation with a cabledriven robot,” IEEE Trans. Robot., vol. 33, no. 5, pp. 1156–1169, Oct. 2017. doi: 10.1109/TRO.2017.2707562

[98] 
A. Censi, A. Franchi, L. Marchionni, and G. Oriolo, “Simultaneous calibration of odometry and sensor parameters for mobile robots,” IEEE Trans. Robot., vol. 29, no. 2, pp. 475–492, Apr. 2013. doi: 10.1109/TRO.2012.2226380

[99] 
M. Boukens, A. Boukabou, and M. Chadli., “A real time selftuning motion controller for mobile robot systems,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 84–96, Jan. 2019. doi: 10.1109/JAS.2018.7511216

[100] 
D. Son, X. G. Dong, and M. Sitti, “A simultaneous calibration method for magnetic robot localization and actuation systems,” IEEE Trans. Robot., vol. 35, no. 2, pp. 343–352, Apr. 2019. doi: 10.1109/TRO.2018.2885218

[101] 
C. Jiang and S. Ueno, “Posture maintenance control of 2link object by nonprehensile twocooperativearm robot without compensating friction,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 6, pp. 1397–1403, Nov. 2019.

[102] 
T. Sun, B. B. Lian, S. F. Yang, and Y. M. Song, “Kinematic calibration of serial and parallel robots based on finite and instantaneous screw theory,” IEEE Trans. Robot., vol. 36, no. 3, pp. 816–834, Jun. 2020. doi: 10.1109/TRO.2020.2969028

[103] 
N. Tan, C. Clévy, G. J. Laurent, P. Sandoz, and N. Chaillet, “Accuracy quantification and improvement of serial micropositioning robots for inplane motions,” IEEE Trans. Robot., vol. 31, no. 6, pp. 1497–1507, Dec. 2015. doi: 10.1109/TRO.2015.2498301

[104] 
J. Kang and N. L. Doh, “FullDOF calibration of a rotating 2D LIDAR with a simple plane measurement,” IEEE Trans. Robot., vol. 32, no. 5, pp. 1245–1263, Oct. 2016. doi: 10.1109/TRO.2016.2596769

[105] 
H. Bettahar, O. Lehmann, C. Clevy, N. Courjal, and P. Lutz, “Photorobotic extrinsic parameters calibration of 6DOF robot for high positioning accuracy,” IEEE/ASME Trans. Mech., vol. 25, no. 2, pp. 616–626, Apr. 2020. doi: 10.1109/TMECH.2020.2965255

[106] 
K. Majd, M. RazeghiJahromi, and A. Homaifar, “A stable analytical solution method for carlike robot trajectory tracking and optimization,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 39–47, Jan. 2020. doi: 10.1109/JAS.2019.1911816

[107] 
J. Liu, Q. Gao, Z. Liu, and Y. Li, “Attitude control for astronaut assisted robot in the space station,” Int. J. Control Autom. Syst., vol. 14, no. 4, pp. 1082–1094, Aug. 2016. doi: 10.1007/s1255501405684

[108] 
M. S. Erden and B. Mari, “Assisting manual welding with robot,” Robot. Comput.Integr. Manuf., vol. 27, no. 4, pp. 818–828, Aug. 2011. doi: 10.1016/j.rcim.2011.01.003

[109] 
H. Y. Yu, S. N. Huang, G. Chen, Y. P. Pan, and Z. Guo, “Humanrobot interaction control of rehabilitation robots with series elastic actuators,” IEEE Trans. Robot., vol. 31, no. 5, pp. 1089–1100, Oct. 2015. doi: 10.1109/TRO.2015.2457314

[110] 
B. D. Argall and A. G. Billard, “A survey of tactile humanrobot interactions,” Robot. Auton. Syst., vol. 58, no. 10, pp. 1159–1176, Oct. 2010. doi: 10.1016/j.robot.2010.07.002

[111] 
Y. Li and S. Sam Ge, “Impedance learning for robots interacting with unknown environments,” IEEE Trans. Control Syst. Technol., vol. 22, no. 4, pp. 1422–1432, Jul. 2014. doi: 10.1109/TCST.2013.2286194

[112] 
I. Ranatunga, F. L. Lewis, D. O. Popa, and S. M. Tousif, “Adaptive admittance control for humanrobot interaction using model reference design and adaptive inverse filtering,” IEEE Trans. Control Syst. Technol., vol. 25, no. 1, pp. 278–285, Jan. 2017. doi: 10.1109/TCST.2016.2523901

[113] 
C. Premachandra, M. Otsuka, R. Gohara, T. Ninomiya, and K. Kato, “A study on development of a hybrid aerial/terrestrial robot system for avoiding ground obstacles by flight,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 327–336, Jan. 2019. doi: 10.1109/JAS.2018.7511258

[114] 
P. E. Dupont, J. Lock, B. Itkowitz, and E. Butler, “Design and control of concentrictube robots,” IEEE Trans. Robot., vol. 26, no. 2, pp. 209–225, Apr. 2010. doi: 10.1109/TRO.2009.2035740

[115] 
D. C. Rucker, B. A. Jones, and R. J. Webster III, “A geometrically exact model for externally loaded concentrictube continuum robots,” IEEE Trans. Robot., vol. 26, no. 5, pp. 769–780, Oct. 2010. doi: 10.1109/TRO.2010.2062570

[116] 
K. Leibrandt, C. Bergeles, and G. Z. Yang, “Concentric tube robots: Rapid, stable pathplanning and guidance for surgical use,” IEEE Robot. Autom. Mag., vol. 24, no. 2, pp. 42–53, Jun. 2017. doi: 10.1109/MRA.2017.2680546

[117] 
K. Y. Wu, G. N. Zhu, L. Wu, W. C. Gao, S. Song, C. M. Lim, and H. L. Ren, “Safetyenhanced modelfree visual servoing for continuum tubular robots through singularity avoidance in confined environments,” IEEE Access, vol. 7, pp. 21539–21558, Jan. 2019. doi: 10.1109/ACCESS.2019.2891952

[118] 
A. V. Kudryavtsev, M. T. Chikhaoui, A. Liadov, P. Rougeot, F. Spindler, K. Rabenorosoa, J. BurgnerKahrs, B. Tamadazte, and N. Andreff , “Eyeinhand visual servoing of concentric tube robots,” IEEE Robot. Autom. Lett., vol. 3, no. 3, pp. 2315–2321, Jul. 2018. doi: 10.1109/LRA.2018.2807592

[119] 
M. M. Marinho, B. V. Adorno, K. Harada, and M. Mitsuishi, “Dynamic active constraints for surgical robots using vectorfield inequalities,” IEEE Trans. Robot., vol. 35, no. 5, pp. 1166–1185, Oct. 2019. doi: 10.1109/TRO.2019.2920078

[120] 
Z. Pan, J. Polden, N. Larkin, S. Van Duin, and J. Norrish, “Recent progress on programming methods for industrial robots,” Robot. Comput.Integr. Manuf., vol. 28, no. 2, pp. 87–94, Apr. 2012. doi: 10.1016/j.rcim.2011.08.004

[121] 
L. B. Zhang, Z. J. Li, and C. G. Yang, “Adaptive neural network based variable stiffness control of uncertain robotic systems using disturbance observer,” IEEE Trans. Ind. Electron., vol. 64, no. 3, pp. 2236–2245, Mar. 2017. doi: 10.1109/TIE.2016.2624260

[122] 
K. M. Zheng, Y. M. Hu, and B. Wu, “Modelfree development of control systems for a multidegreeoffreedom robot,” Mechatronics, vol. 53, pp. 262–276, Aug. 2018. doi: 10.1016/j.mechatronics.2018.06.015

[123] 
X. L. Chen, H. Zhao, S. C. Zhen, and H. Sun, “Adaptive robust control for a lower limbs rehabilitation robot running under passive training mode,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 2, pp. 493–502, Mar. 2019. doi: 10.1109/JAS.2019.1911402

[124] 
Z. T. Fu, J. B. Pan, E. SpyrakosPapastavridis, X. B. Chen, and M. Li, “A dual quaternionbased approach for coordinate calibration of dual robots in collaborative motion,” IEEE Robot. Autom. Lett., vol. 5, no. 3, pp. 4086–4093, Jul. 2020. doi: 10.1109/LRA.2020.2988407
