IEEE/CAA Journal of Automatica Sinica
Citation:  Zhipeng Chen, Zhaohui Jiang, Chunjie Yang, Weihua Gui and Youxian Sun, "Dust Distribution Study at the Blast Furnace Top Based on kSεu_{p} Model," IEEE/CAA J. Autom. Sinica, vol. 8, no. 1, pp. 121135, Jan. 2021. doi: 10.1109/JAS.2020.1003468 
[1] 
Y. Hashimoto, Y. Kitamura, and T. Ohashi, “Transient modelbased operation guidance on BF,” Control Eng. Pract., vol. 82, pp. 130–141, Jan. 2019. doi: 10.1016/j.conengprac.2018.10.009

[2] 
Y. Zhang, P. Zhou, and G. M. Cui, “Multimodel based PSO method for burden distribution matrix optimization with expected burden distribution output behaviors,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 6, pp. 1506–1512, Nov. 2019.

[3] 
Z. H. Yi, Z. P Chen, Z. H. Jiang, and W. H. Gui, “A novel threedimensional hightemperature industrial endoscope with large field depth and wide field,” IEEE Trans. Instrum. Meas., pp. 1–1, Jan. 2020.

[4] 
F. Jin, J. Zhao, C. Y. Sheng, and W. Wang, “Causality diagrambased scheduling approach for blast furnace gas system,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 587–594, Mar. 2018. doi: 10.1109/JAS.2017.7510715

[5] 
J. D. Wei and X. Z. Chen, “Blast furnace gas flow strength prediction using FMCW radar,” ISIJ INT., vol. 55, pp. 600–604, Apr. 2015. doi: 10.2355/isijinternational.55.600

[6] 
M. Lateb, C. Masson, T. Stathopoulos, and C. Bédard, “Comparison of various types of kε models for pollutant emissions around a twobuilding configuration,” J. Wind. Eng. Ind. Aerod., vol. 115, pp. 9–21, Apr. 2013. doi: 10.1016/j.jweia.2013.01.001

[7] 
J. L. Li, H. W. Tang, and Y. T. Yang, “Numerical simulation and thermal performance optimization of turbulent flow in a channel with multi Vshaped baffles,” Int. Commun. Heat Mass, vol. 92, pp. 39–50, Mar. 2018. doi: 10.1016/j.icheatmasstransfer.2018.02.004

[8] 
H. Li, N. K. An, and Y. A. Hassan, “Computational study of turbulent flow interaction between twin rectangular jets,” Int. J. Heat Mass Tran., vol. 119, pp. 752–767, Apr. 2018. doi: 10.1016/j.ijheatmasstransfer.2017.12.008

[9] 
F. Afroz and M. A. R. Sharif, “Numerical study of turbulent annular impinging jet flow and heat transfer from a flat surface,” Appl. Therm. Eng., vol. 138, pp. 154–172, Jun. 2018. doi: 10.1016/j.applthermaleng.2018.04.007

[10] 
J. Fu, Y. Tang, J. X. Li, Y. Ma, W. Chen, and H. Li, “Four kinds of the twoequation turbulence model’s research on flow field simulation performance of DPF’s porous media and swirltype regeneration burner,” Appl. Therm. Eng., vol. 93, pp. 397–404, Jan. 2016. doi: 10.1016/j.applthermaleng.2015.09.116

[11] 
S. Kumar, A. D. Kothiyal, M. S. Bisht, and A. Kumar, “Turbulent heat transfer and nanofluid flow in a protruded ribbed square passage,” Results Phys., vol. 7, pp. 3603–3618, 2017. doi: 10.1016/j.rinp.2017.09.023

[12] 
K. Nakajima, R. Ooka, and H. Kikumoto, “Evaluation of kε Reynolds stress modeling in an idealized urban canyon using LES,” J. Wind Eng. Ind. Aerod., vol. 175, pp. 213–228, Apr. 2018. doi: 10.1016/j.jweia.2018.01.034

[13] 
M. Mößner and R. Radespiel, “Modelling of turbulent flow over porous media using a volume averaging approach and a Reynolds stress model,” Comput. Fluids., vol. 108, pp. 25–42, Feb. 2015. doi: 10.1016/j.compfluid.2014.11.024

[14] 
A. Yoshizawa, H. Abe, and Y. Matsuo, “A Reynoldsaveraged turbulence modeling approach using three transport equations for the turbulent viscosity, kinetic energy, and dissipation rate,” Phys. Fluids., vol. 24, pp. 0751091–07510921, Jul. 2012.

[15] 
R. H. Kraichnan, “An almostMarkovian Galileaninvariant turbulence model,” J. Fluid Mech., vol. 47, no. 3, pp. 513–524, Jun. 1971. doi: 10.1017/S0022112071001204

[16] 
A. Yoshizawa, “Statistical theory for the diffusion of a passive scalar in turbulent shear flows,” J. Phys. Soc. Jpn., vol. 53, no. 4, pp. 1264–1276, Apr. 1984. doi: 10.1143/JPSJ.53.1264

[17] 
Y. Shimomura, “A theoretical study of the turbulent diffusion in incompressible shear flows and in passive scalars,” Phys. Fluids, vol. 10, no. 10, pp. 2636–2646, Oct. 1998. doi: 10.1063/1.869776

[18] 
R. Rzehak and E. Krepper, “EulerEuler simulation of masstransfer in bubbly flows,” Chem. Eng. Sci., vol. 155, pp. 459–468, Nov. 2016. doi: 10.1016/j.ces.2016.08.036

[19] 
D. Gidaspow, “Multiphase flow and fluidization – continuum and kinetic theory description,” J. NonNewton. Fluid, vol. 55, no. 3, pp. 207–208, Nov. 1994.

[20] 
P. J. Ireland and O. Desjardins, “Improving particle drag predictions in EulerLagrange simulations with twoway coupling,” J. Comput. Phys., vol. 338, pp. 405–430, Jun. 2017. doi: 10.1016/j.jcp.2017.02.070

[21] 
G. B. Schubauer and C. M. Tchen. Turbulent Flow, Princeton, Princeton University Press, 2016.

[22] 
L. X. Zhou, “Twophase turbulence models in EulerianEulerian simulation of gasparticle flows and coal combustion,” Procedia Engineering, vol. 102, pp. 1677–1696, 2015. doi: 10.1016/j.proeng.2015.01.304

[23] 
L. X. Zhou and T. Chen, “Simulation of swirling gas–particle flows using USM and k–ε–k _{p} twophase turbulence models,” Powder Technol., vol. 114, no. 1–3, pp. 1–11, Jan. 2001. doi: 10.1016/S00325910(00)002540

[24] 
A. I. J. Love, D. Giddings, and H. Power, “Gasparticle flow modeling: beyond the dilute limit,” Procedia Engineering, vol. 102, pp. 1426–1435, 2015. doi: 10.1016/j.proeng.2015.01.276

[25] 
C. P. Chen and P. E. Wood, “Turbulence closure modeling of twophase flows,” Chem. Eng. Commun., vol. 29, no. 1, pp. 291–310, Aug. 1984.

[26] 
J. B. Jiang, L. B. Wang, and Z. M. Lu, “A new model for turbulent energy dissipation,” Int. J. Nonlin. Sci. Num., vol. 2, no. 3, pp. 277–282, Jan. 2001.

[27] 
X. F. Dong, D. Pinson, S. J. Zhang, A. B. Yu, and P. Zulli, “Gaspowder flow in blast furnace with different shapes of cohesive zone,” Appl. Math. Model, vol. 30, pp. 1293–1309, Apr. 2006. doi: 10.1016/j.apm.2006.03.004

[28] 
R. Rubinstein and Y. Zhou, “Analytical theory of the destruction terms in dissipation rate transport equations,” Phys. Fluids., vol. 8, no. 11, pp. 3172–3178, Nov. 1996. doi: 10.1063/1.869090

[29] 
Z. P. Chen, Z. H. Jiang, W. H. Gui, and C. H. Yang, “A novel device for optical imaging of blast furnace burden surface: parallel lowlightloss backlight hightemperature industrial endoscope,” IEEE Sens. J., vol. 16, pp. 6703–6717, Sep. 2016. doi: 10.1109/JSEN.2016.2587729
