A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 8 Issue 7
Jul.  2021

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 6.171, Top 11% (SCI Q1)
    CiteScore: 11.2, Top 5% (Q1)
    Google Scholar h5-index: 51, TOP 8
Turn off MathJax
Article Contents
Xiwang Guo, MengChu Zhou, Abdullah Abusorrah, Fahad Alsokhiry and Khaled Sedraoui, "Disassembly Sequence Planning: A Survey," IEEE/CAA J. Autom. Sinica, vol. 8, no. 7, pp. 1308-1324, July 2021. doi: 10.1109/JAS.2020.1003515
Citation: Xiwang Guo, MengChu Zhou, Abdullah Abusorrah, Fahad Alsokhiry and Khaled Sedraoui, "Disassembly Sequence Planning: A Survey," IEEE/CAA J. Autom. Sinica, vol. 8, no. 7, pp. 1308-1324, July 2021. doi: 10.1109/JAS.2020.1003515

Disassembly Sequence Planning: A Survey

doi: 10.1109/JAS.2020.1003515
Funds:  This work was supported in part by the Research Foundation of China (L2019027), Liaoning Revitalization Talents Program (XLYC1907166), and the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah (KEP-2-135-39)
More Information
  • It is well-recognized that obsolete or discarded products can cause serious environmental pollution if they are poorly be handled. They contain reusable resource that can be recycled and used to generate desired economic benefits. Therefore, performing their efficient disassembly is highly important in green manufacturing and sustainable economic development. Their typical examples are electronic appliances and electromechanical/mechanical products. This paper presents a survey on the state of the art of disassembly sequence planning. It can help new researchers or decision makers to search for the right solution for optimal disassembly planning. It reviews the disassembly theory and methods that are applied for the processing, repair, and maintenance of obsolete/discarded products. This paper discusses the recent progress of disassembly sequencing planning in four major aspects: product disassembly modeling methods, mathematical programming methods, artificial intelligence methods, and uncertainty handling. This survey should stimulate readers to be engaged in the research, development and applications of disassembly and remanufacturing methodologies in the Industry 4.0 era.

     

  • loading
  • [1]
    S. Behdad and D. Thurston, “Disassembly process planning tradeoffs for product maintenance,” in Proc. ASME Int. Design Engineering Technical Conf. and Computers and Information in Engineering Conf., Montreal, Canada, pp. 427–434.
    [2]
    S. Behdad and D. Thurston, “Disassembly and reassembly sequence planning tradeoffs under uncertainty for product maintenance,” J. Mech. Des., vol. 134, no. 4, Article No. 041011, Apr. 2012. doi: 10.1115/1.4006262
    [3]
    J. Li, M. Barwood, and S. Rahimifard, “Robotic disassembly for increased recovery of strategically important materials from electrical vehicles,” Robot. Comput. Integr. Manuf., vol. 50, pp. 203–212, 2018.
    [4]
    X. W. Song, W. D. Zhou, X. X. Pan, and K. Feng, “Disassembly sequence planning for electro-mechanical products under a partial destructive mode,” Assembly Autom., vol. 34, no. 1, pp. 106–114, Jan. 2014. doi: 10.1108/AA-01-2013-006
    [5]
    Y. P. Ren, D. Y. Yu, C. Y. Zhang, G. D. Tian, L. L. Meng, and X. Q. Zhou, “An improved gravitational search algorithm for profit-oriented partial disassembly line balancing problem,” Int. J. Prod. Res., vol. 55, no. 24, pp. 7302–7316, Jul. 2017. doi: 10.1080/00207543.2017.1341066
    [6]
    Y. P. Ren, H. Y. Jin, F. Zhao, T. Qu, L. L. Meng, C. Y. Zhang, B. Zhang, G. Wang, and J. W. Sutherland, “A multiobjective disassembly planning for value recovery and energy conservation from end-of-life products,” IEEE Trans. Autom. Sci. Eng., vol. 99, pp. 1–13, Jun. 2020.
    [7]
    Y. Tang, M. C. Zhou, E. Zussman, and R. Caudill, “Disassembly modeling, planning and application: A review,” in Proc. IEEE Int. Conf. Robotics and Autom. Symposia, San Francisco, USA, 2000, pp. 2197–2202.
    [8]
    A. J. D. Lambert, “Disassembly sequencing: A survey,” Int. J. Prod. Res., vol. 41, no. 16, pp. 3721–3759, Nov. 2003. doi: 10.1080/0020754031000120078
    [9]
    M. A. Ilgin and S. M. Gupta, “Environmentally conscious manufacturing and product recovery (ECMPRO): A review of the state of the art,” J. Environ. Manag., vol. 91, no. 3, pp. 563–591, Jan.–Feb. 2010. doi: 10.1016/j.jenvman.2009.09.037
    [10]
    M. A. Ilgin, S. M. Gupta, and O. Battaïa, “Use of MCDM techniques in environmentally conscious manufacturing and product recovery: State of the art,” J. Manuf. Syst., vol. 37, no. 3, pp. 746–758, Oct. 2015.
    [11]
    Z. D. Zhou, J. Y. Liu, D. T. Pham, W. J. Xu, F. J. Ramirez, C. Q. Ji, and Q. Liu, “Disassembly sequence planning: Recent developments and future trends,” Proc. Inst. Mech. Eng. B J. Eng. Manuf., vol. 233, no. 5, pp. 1450–1471, Apr. 2019. doi: 10.1177/0954405418789975
    [12]
    R. Bogue, “Design for disassembly: A critical twenty-first century discipline,” Assembly Autom., vol. 27, no. 4, pp. 285–289, Oct. 2007. doi: 10.1108/01445150710827069
    [13]
    S. M. McGovern and S. M. Gupta, “Benchmark data set for evaluation of line balancing algorithms,” IFAC Proc. Vol., vol. 40, no. 2, pp. 48–53, Jan. 2007. doi: 10.3182/20070523-3-ES-4907.00009
    [14]
    Y. L. Fang, Q. Liu, M. Q. Li, Y. J. Laili, and D. T. Pham, “Evolutionary many-objective optimization for mixed-model disassembly line balancing with multi-robotic workstations,” Eur. J. Oper. Res., vol. 276, no. 1, pp. 160–174, Jul. 2019. doi: 10.1016/j.ejor.2018.12.035
    [15]
    S. Agrawal and M. K. Tiwari, “A collaborative ant colony algorithm to stochastic mixed-model U-shaped disassembly line balancing and sequencing problem,” Int. J. Prod. Res., vol. 46, no. 6, pp. 1405–1429, Mar. 2008. doi: 10.1080/00207540600943985
    [16]
    K. P. Wang, X. Y. Li, and L. Gao, “Modeling and optimization of multi-objective partial disassembly line balancing problem considering hazard and profit,” J. Clean. Prod., vol. 211, pp. 115–133, Feb. 2019. doi: 10.1016/j.jclepro.2018.11.114
    [17]
    C. B. Kalayci and S. M. Gupta, “Artificial bee colony algorithm for solving sequence-dependent disassembly line balancing problem,” Exp. Syst. Appl., vol. 40, no. 18, pp. 7231–7241, Dec. 2013. doi: 10.1016/j.eswa.2013.06.067
    [18]
    M. L. Bentaha, O. Battaïa, and A. Dolgui, “An exact solution approach for disassembly line balancing problem under uncertainty of the task processing times,” Int. J. Prod. Res., vol. 53, no. 6, pp. 1807–1818, 2015. doi: 10.1080/00207543.2014.961212
    [19]
    M. L. Bentaha, O. Battaïa, and A. Dolgui, “Disassembly line balancing and sequencing under uncertainty,” Procedia CIRP, vol. 15, pp. 239–244, Dec. 2014. doi: 10.1016/j.procir.2014.06.016
    [20]
    S. Hezer and Y. Kara, “A network-based shortest route model for parallel disassembly line balancing problem,” Int. J. Prod. Res., vol. 53, no. 6, pp. 1849–1865, Mar. 2015. doi: 10.1080/00207543.2014.965348
    [21]
    M. A. Ilgin, H. Akçay, and C. Araz, “Disassembly line balancing using linear physical programming,” Int. J. Prod. Res., vol. 55, no. 20, pp. 6108–6119, May 2017. doi: 10.1080/00207543.2017.1324225
    [22]
    F. T. Altekin, L. Kandiller, and N. E. Ozdemirel, “Profit-oriented disassembly-line balancing,” Int. J. of Prod. Res., vol. 46, no. 10, pp. 2675–2693, May 2008. doi: 10.1080/00207540601137207
    [23]
    X. C. Ji, Z. H. Zhang, S. M. Huang, and L. F. Li, “Capacitated disassembly scheduling with parts commonality and start-up cost and its industrial application,” Int. J. Prod. Res., vol. 54, no. 4, pp. 1225–1243, Jun. 2016. doi: 10.1080/00207543.2015.1058536
    [24]
    K. W. Kang, H. H. Doh, J. H. Park, and D. H. Lee, “Disassembly leveling and lot sizing for multiple product types: A basic model and its extension,” Int. J. Adv. Manuf. Technol., vol. 82, no. 9–12, pp. 1463–1473, Feb. 2016. doi: 10.1007/s00170-012-4570-9
    [25]
    D. H. Kim, H. H. Doh, and D. H. Lee, “Multi-period disassembly levelling and lot-sizing for multiple product types with parts commonality,” Proc. Inst. Mech. Eng. B J. Eng. Manuf., vol. 232, no. 5, pp. 867–878, Aug. 2018. doi: 10.1177/0954405416661001
    [26]
    S. A. Reveliotis, “Uncertainty management in optimal disassembly planning through learning-based strategies,” IIE Trans., vol. 39, no. 6, pp. 645–658, Mar. 2007.
    [27]
    Y. F. Xie, M. F. Huang, Y. R. Zhong, and B. Kuang, “Disassembly sequence planning based on the simulated annealing and genetic algorithm,” Mech. Eng., no. 1, pp. 103–105, 2007.
    [28]
    Y. T. Luo and Q. J. Peng, “Disassembly sequence planning for product maintenance,” in Proc. ASME Int. Design Engineering Technical Conf. and Computers and Information in Engineering Conf., Chicago, USA, 2012, pp. 601–609.
    [29]
    S. C. Feng, T. Kramer, R. D. Sriram, H. Lee, C. B. Joung, and P. Ghodous, “Disassembly process information model for remanufacturing,” J. Comput. Inf. Sci. Eng., vol. 13, no. 3, Article No. 031004, Sep. 2013. doi: 10.1115/1.4024543
    [30]
    C. Ullerich and U. Buscher, “Flexible disassembly planning considering product conditions,” Int. J. Prod. Res., vol. 51, no. 20, pp. 6209–6228, Oct. 2013. doi: 10.1080/00207543.2013.825406
    [31]
    S. E. Zhao, Y. L. Li, R. Fu, and W. Yuan, “Fuzzy reasoning Petri nets and its application to disassembly sequence decision-making for the end-of-life product recycling and remanufacturing,” Int. J. Comput. Integr. Manuf., vol. 27, no. 5, pp. 415–421, May 2014. doi: 10.1080/0951192X.2012.717714
    [32]
    T. C. Kuo and M. L. Wang, “Waste electronics and electrical equipment disassembly and recycling using Petri net analysis,” in Proc. 40th Int. Conf. Computers & Indutrial Engineering, Awaji, Japan, 2010, pp. 1–6.
    [33]
    L. Zhang, Z. F. Liu, M. Yang, and D. Hu, “Disassembly sequence planning based on interpretative structural model,” J. Comput. Aided Des. Comput. Graph., vol. 23, no. 4, pp. 667–675, Apr. 2011.
    [34]
    S. X. Song, D. Hu, Y. Gao, M. Yang, and Y. Zhang, “Product disassembly sequence planning based on constraint satisfaction problems,” Chin. Mech. Eng., vol. 21, no. 17, pp. 2058–2062, Sep. 2010.
    [35]
    A. J. D. Lambert, “Optimizing disassembly processes subjected to sequence-dependent cost,” Comput. Oper. Res., vol. 34, no. 2, pp. 536–551, Feb. 2007. doi: 10.1016/j.cor.2005.03.012
    [36]
    S. S. Min, X. J. Zhu, and X. Zhu, “Mechanical product disassembly and/or graph construction,” in Proc. Int. Conf. Measuring Technology and Mechatronics Autom. Changsha, China, 2010, pp. 627–631.
    [37]
    S. S. Min, X. J. Zhu, and X. Zhu, “Research on disassembly and/or graph construction and uncertain weight,” Chinese J. Eng. Des., vol. 17, pp. 19–24, 2010.
    [38]
    Y. J. Tseng, H. T. Kao, and F. Y. Huang, “Integrated assembly and disassembly sequence planning using a GA approach,” Int. J. Prod. Res., vol. 48, no. 20, pp. 5991–6013, Oct. 2010. doi: 10.1080/00207540903229173
    [39]
    R. Viganò and G. O. Gómez, “Automatic assembly sequence exploration without precedence definition,” Int. J. Interact. Des. Manuf., vol. 7, no. 2, pp. 79–89, May 2013. doi: 10.1007/s12008-012-0165-9
    [40]
    K. Xia, L. Gao, W. D. Li, and K. M. Chao, “Disassembly sequence planning using a simplified teaching-learning-based optimization algorithm,” Adv. Eng. Inform., vol. 28, no. 4, pp. 518–527, Oct. 2014. doi: 10.1016/j.aei.2014.07.006
    [41]
    X. W. Guo, S. X. Liu, M. C. Zhou, and G. D. Tian, “Dual-objective program and scatter search for the optimization of disassembly sequences subject to multiresource constraints,” IEEE Trans. Autom. Sci. Eng., vol. 15, no. 3, pp. 1091–1103, Jul. 2018. doi: 10.1109/TASE.2017.2731981
    [42]
    Y. P. Ren, L. L. Meng, C. Y. Zhang, F. Zhao, U. Saif, A. H. Huang, G. P. Mendis, and J. W. Sutherland, “An efficient metaheuristics for a sequence-dependent disassembly planning,” J. Clean. Prod., vol. 245, Article No. 118644, Feb. 2020. doi: 10.1016/j.jclepro.2019.118644
    [43]
    M. C. Zhou and F. DiCesare, Petri Net Synthesis for Discrete Event Control of Manufacturing Systems. Boston, USA: Springer, 1993.
    [44]
    M. C. Zhou and K. Venkatesh, Modeling, Simulation, and Control of Flexible Manufacturing Systems: A Petri Net Approach. Singapore: World Scientific, 1999.
    [45]
    D. E. Grochowski and Y. Tang, “A machine learning approach for optimal disassembly planning,” Int. J. Comput. Integr. Manuf., vol. 22, no. 4, pp. 374–383, Apr. 2009. doi: 10.1080/09511920802024176
    [46]
    F. Giudice, “Disassembly depth distribution for ease of service: A rule-based approach,” J. Eng. Des., vol. 21, no. 4, pp. 375–411, May 2010. doi: 10.1080/09544820802282504
    [47]
    T. C. Kuo, “Waste electronics and electrical equipment disassembly and recycling using Petri net analysis: Considering the economic value and environmental impacts,” Comput. Ind. Eng., vol. 65, no. 1, pp. 54–64, May 2013. doi: 10.1016/j.cie.2011.12.029
    [48]
    X. W. Guo, S. X. Liu, M. C. Zhou, and G. D. Tian, “Disassembly sequence optimization for large-scale products with multiresource constraints using scatter search and petri nets,” IEEE Trans. Cybern., vol. 46, no. 11, pp. 2435–2446, Nov. 2016. doi: 10.1109/TCYB.2015.2478486
    [49]
    S. S. Smith and W. H. Chen, “Rule-based recursive selective disassembly sequence planning for green design,” Adv. Eng. Inf., vol. 25, no. 1, pp. 77–87, Jan. 2011. doi: 10.1016/j.aei.2010.03.002
    [50]
    S. Smith and W. H. Chen, “Multiple-target selective disassembly sequence planning with disassembly sequence structure graphs,” in Proc. ASME Int. Design Engineering Technical Conf. and Computers and Information in Engineering Conf., Chicago, USA, 2012, pp. 1305–1314.
    [51]
    A. ElSayed, E. Kongar, and S. M. Gupta, “An evolutionary algorithm for selective disassembly of End-of-Life products,” Int. J. Swarm Intel. Evol. Comput., vol. 1, Article No. Z110601, 2012.
    [52]
    H. J. Li, J. Jiang, and Y. F. Wang, “Disassembly sequence planning based on extended interference matrix and genetic algorithm,” Comput. Eng. Des., vol. 34, no. 3, pp. 1064–1068, Mar. 2013.
    [53]
    H. Wang, D. Xiang, G. H. Duan, and J. Song, “A hybrid heuristic approach for disassembly/recycle application,” in Proc. Int. Conf. Intelligent Systems Design and Application, Jinan, China, 2006, pp. 985–995.
    [54]
    F. Y. Li, J. F. Li, J. Z. Li, and G. H. Duan, “A product selective disassembly model based on hybrid directed graph,” China Mech. Eng., vol. 20, no. 5, pp. 553–558, Mar. 2009.
    [55]
    X. F. Zhang and S. Y. Zhang, “Product disassembly sequence planning based on particle swarm optimization algorithm,” Comput. Integr. Manuf. Syst., vol. 15, no. 3, pp. 508–514, Mar. 2009.
    [56]
    X. F. Zhang and S. Y. Zhang, “Product cooperative disassembly sequence planning based on branch-and-bound algorithm,” Int. J. Adv. Manuf. Technol., vol. 51, no. 9-12, pp. 1139–1147, Dec. 2010. doi: 10.1007/s00170-010-2682-7
    [57]
    Q. Peng, X. Kang, and C. Chung, “Selective disassembly planning for product maintenance and recycle,” Int. J. Eng. Simul., vol. 12, pp. 5–14, Jan. 2011.
    [58]
    Y. F. Xing, C. G. Wang, and Q. Liu, “Disassembly sequence planning based on pareto ant colony algorithm,” J. Mech. Eng., vol. 48, no. 9, pp. 186–192, May 2012. doi: 10.3901/JME.2012.09.186
    [59]
    A. ElSayed, E. Kongar, S. M. Gupta, and T. Sobh, “A robotic-driven disassembly sequence generator for end-of-life electronic products,” J. Intell. Robot. Syst., vol. 68, no. 1, pp. 43–52, Sep. 2012. doi: 10.1007/s10846-012-9667-8
    [60]
    H. J. Han, J. M. Yu, and D. H. Lee, “Mathematical model and solution algorithms for selective disassembly sequencing with multiple target components and sequence-dependent setups,” Int. J. Prod. Res., vol. 51, no. 16, pp. 4997–5010, Jun. 2013. doi: 10.1080/00207543.2013.788794
    [61]
    B. C. Zhu, M. I. Sarigecili, and U. Roy, “Disassembly information model incorporating dynamic capabilities for disassembly sequence generation,” Robot. Comput. Integr. Manuf., vol. 29, no. 5, pp. 396–409, Oct. 2013. doi: 10.1016/j.rcim.2013.03.003
    [62]
    X. F. Zhang, G. Yu, Z. Y. Hu, C. H. Pei, and G. Q. Ma, “Parallel disassembly sequence planning for complex products based on fuzzy-rough sets,” Int. J. Adv. Manuf. Technol., vol. 72, no. 1–4, pp. 231–239, Apr. 2014. doi: 10.1007/s00170-014-5655-4
    [63]
    P. Mitrouchev, C. G. Wang, L. X. Lu, and G. Q. Li, “Selective disassembly sequence generation based on lowest level disassembly graph method,” Int. J. Adv. Manuf. Technol., vol. 80, no. 1–4, pp. 141–159, Sep. 2015. doi: 10.1007/s00170-015-6861-4
    [64]
    M. Tripathi, S. Agrawal, M. K. Pandey, R. Shankar, and M. K. Tiwari, “Real world disassembly modeling and sequencing problem: Optimization by algorithm of self-guided ants (ASGA),” Robot. Comput. Integr. Manuf., vol. 25, no. 3, pp. 483–496, Jun. 2009. doi: 10.1016/j.rcim.2008.02.004
    [65]
    A. J. D. Lambert and S. M. Gupta, “Methods for optimum and near optimum disassembly sequencing,” Int. J. Prod. Res., vol. 46, no. 11, pp. 2845–2865, Apr. 2008. doi: 10.1080/00207540601120484
    [66]
    Y. S. Ma, H. B. Jun, H. W. Kim, and D. H. Lee, “Disassembly process planning algorithms for end-of-life product recovery and environmentally conscious disposal,” Int. J. Prod. Res., vol. 49, no. 23, pp. 7007–7027, Feb. 2011. doi: 10.1080/00207543.2010.495089
    [67]
    S. Behdad, L. P. Berg, D. Thurston, and J. Vance, “Leveraging virtual reality experiences with mixed-integer nonlinear programming visualization of disassembly sequence planning under uncertainty,” J. Mech. Des., vol. 136, no. 4, Article No. 041005, Apr. 2014. doi: 10.1115/1.4026463
    [68]
    H. W. Kim and D. H. Lee, “An optimal algorithm for selective disassembly sequencing with sequence-dependent set-ups in parallel disassembly environment,” Int. J. Prod. Res., vol. 55, no. 24, pp. 7317–7333, Jun. 2017. doi: 10.1080/00207543.2017.1342879
    [69]
    Q. Lu, Y. P. Ren, H. Y. Jin, L. L. Meng, L. Li, C. Y. Zhang, and J. W. Sutherland, “A hybrid metaheuristic algorithm for a profit-oriented and energy-efficient disassembly sequencing problem,” Robot. Comput. Integr. Manuf., vol. 61, Article No. 101828, Feb. 2020. doi: 10.1016/j.rcim.2019.101828
    [70]
    I. Aguinaga, D. Borro, and L. Matey, “Parallel RRT-based path planning for selective disassembly planning,” Int. J. Adv. Manuf. Technol., vol. 36, no. 11–12, pp. 1221–1233, Apr. 2008. doi: 10.1007/s00170-007-0930-2
    [71]
    B. Adenso-Díaz, S. García-Carbajal, and S. M. Gupta, “A path-relinking approach for a bi-criteria disassembly sequencing problem,” Comput. Oper. Res., vol. 35, no. 12, pp. 3989–3997, Dec. 2008. doi: 10.1016/j.cor.2007.06.002
    [72]
    G. D. Tian, J. W. Chu, Y. M. Liu, H. Ke, X. Zhao, and G. Xu, “Expected energy analysis for industrial process planning problem with fuzzy time parameters,” Comput. Chem. Eng., vol. 35, no. 12, pp. 2905–2912, Dec. 2011. doi: 10.1016/j.compchemeng.2011.05.012
    [73]
    X. H. Liu, G. L. Peng, X. M. Liu, and Y. F. Hou, “Disassembly sequence planning approach for product virtual maintenance based on improved max–min ant system,” Int. J. Adv. Manuf. Technol., vol. 59, no. 5–8, pp. 829–839, Mar. 2012. doi: 10.1007/s00170-011-3531-z
    [74]
    W. C. Yeh, “Optimization of the disassembly sequencing problem on the basis of self-adaptive simplified swarm optimization,” IEEE Trans. Syst. Man Cybern. A Syst. Hum., vol. 42, no. 1, pp. 250–261, Jan. 2012. doi: 10.1109/TSMCA.2011.2157135
    [75]
    Y. Shimizu, K. Tsuji, and M. Nomura, “Optimal disassembly sequence generation using a genetic programming,” Int. J. Prod. Res., vol. 45, no. 18–19, pp. 4537–4554, May 2007. doi: 10.1080/00207540701440261
    [76]
    F. Giudice and G. Fargione, “Disassembly planning of mechanical systems for service and recovery: A genetic algorithms based approach,” J. Intell. Manuf., vol. 18, no. 3, pp. 313–329, Jun. 2007. doi: 10.1007/s10845-007-0025-9
    [77]
    L. Duţǎ, F. G. Filip, and C. Popescu, “Evolutionary programming in disassembly decision making,” Int. J. Comput. Commun. Control, vol. 3, pp. 282–286, Jun. 2008.
    [78]
    H. Wang, D. Xiang, and G. D. Duan, “A genetic algorithm for product disassembly sequence planning,” Neurocomputing, vol. 71, no. 13–15, pp. 2720–2726, Aug. 2008. doi: 10.1016/j.neucom.2007.11.042
    [79]
    J. C. Mohanta, D. R. Parhi, and S. K. Patel, “Path planning strategy for autonomous mobile robot navigation using Petri-GA optimisation,” Comput. Electr. Eng., vol. 37, no. 6, pp. 1058–1070, Nov. 2011. doi: 10.1016/j.compeleceng.2011.07.007
    [80]
    T. F. Go, D. A. Wahab, M. N. A. Rahman, R. Ramli, and A. Hussain, “Genetically optimised disassembly sequence for automotive component reuse,” Exp. Syst. Appl., vol. 39, no. 5, pp. 5409–5417, Apr. 2012. doi: 10.1016/j.eswa.2011.11.044
    [81]
    S. Smith and P. Y. Hung, “A novel selective parallel disassembly planning method for green design,” J. Eng. Des., vol. 26, no. 10–12, pp. 283–301, 2015. doi: 10.1080/09544828.2015.1045841
    [82]
    M. Kheder, M. Trigui, and N. Aifaoui, “Disassembly sequence planning based on a genetic algorithm,” Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., vol. 229, no. 12, pp. 2281–2290, Aug. 2015. doi: 10.1177/0954406214557340
    [83]
    M. Alshibli, A. El Sayed, E. Kongar, T. M. Sobh, and S. M. Gupta, “Disassembly sequencing using Tabu search,” J. Intell. Robot. Syst., vol. 82, no. 1, pp. 69–79, Apr. 2016. doi: 10.1007/s10846-015-0289-9
    [84]
    H. E. Tseng, C. C. Chang, S. C. Lee, and Y. M. Huang, “A Block-based genetic algorithm for disassembly sequence planning,” Exp. Syst. Appl., vol. 96, pp. 492–505, Apr. 2018. doi: 10.1016/j.eswa.2017.11.004
    [85]
    E. Kongar and S. M. Gupta, “Disassembly sequencing using genetic algorithm,” Int. J. Adv. Manuf. Technol., vol. 30, no. 5–6, pp. 497–506, Sep. 2006. doi: 10.1007/s00170-005-0041-x
    [86]
    Y. P. Ren, C. Y. Zhang, F. Zhao, H. J. Xiao, and G. D. Tian, “An asynchronous parallel disassembly planning based on genetic algorithm,” Eur. J. Oper. Res., vol. 269, no. 2, pp. 647–660, Sep. 2018. doi: 10.1016/j.ejor.2018.01.055
    [87]
    S. Malik, “Performance comparison between ant algorithm and modified ant algorithm,” Int. J. Adv. Comput. Sci. Appl., vol. 1, no. 4, pp. 42–46, Oct. 2010.
    [88]
    L. J. Wang, R. Y. Cai, L. Jing, and H. Zhang, “Object-guided ant colony optimization algorithm with enhanced memory for traveling salesman problem,” Res. J. Appl. Sci. Eng. Technol., vol. 4, no. 20, pp. 3999–4006, Oct. 2012.
    [89]
    T. Eldos, A. Kanan, and A. Aljumah, “Solving the printed circuit board drilling problem by ant colony optimization algorithm,” in Proc. World Congr. Engineering and Computer Science 2013, San Francisco, USA, 2013, pp. 584–588.
    [90]
    Y. T. Luo, Q. J. Peng, and P. H. Gu, “Integrated multi-layer representation and ant colony search for product selective disassembly planning,” Comput. Ind., vol. 75, pp. 13–26, Jan. 2016. doi: 10.1016/j.compind.2015.10.011
    [91]
    B. González and B. Adenso-Díaz, “A bill of materials-based approach for end-of-life decision making in design for the environment,” Int. J. Prod. Res., vol. 43, no. 10, pp. 2071–2099, 2005. doi: 10.1080/00207540412331333423
    [92]
    Z. Lu, Y. C. Sun, O. E. Gabriel, and H. Q. Wu, “Disassembly sequence planning for maintenance based on metaheuristic method,” Aircr. Eng. Aerosp. Technol., vol. 83, no. 3, pp. 138–145, May 2011. doi: 10.1108/00022661111131221
    [93]
    W. C. Yeh, “Simplified swarm optimization in disassembly sequencing problems with learning effects,” Comput. Oper. Res., vol. 39, no. 9, pp. 2168–2177, Sep. 2012. doi: 10.1016/j.cor.2011.10.027
    [94]
    W. D. Li, K. Xia, L. Gao, and K. M. Chao, “Selective disassembly planning for waste electrical and electronic equipment with case studies on liquid crystaldisplays,” Robot. Comput. Integr. Manuf., vol. 29, no. 4, pp. 248–260, Aug. 2013. doi: 10.1016/j.rcim.2013.01.006
    [95]
    G. Percoco and M. Diella, “Preliminary evaluation of artificial bee colony algorithm when applied to multi objective partial disassembly planning,” Res. J. Appl. Sci. Eng. Technol., vol. 6, no. 17, pp. 3234–3243, Sep. 2013. doi: 10.19026/rjaset.6.3628
    [96]
    J. Y. Liu, Z. D. Zhou, D. T. Pham, W. J. Xu, C. Q. Ji, and Q. Liu, “Robotic disassembly sequence planning using enhanced discrete bees algorithm in remanufacturing,” Int. J. Prod. Res., vol. 56, no. 9, pp. 3134–3151, 2017.
    [97]
    J. Y. Liu, Z. D. Zhou, D. T. Pham, W. J. Xu, C. Q. Ji, and Q. Liu, “Collaborative optimization of robotic disassembly sequence planning and robotic disassembly line balancing problem using improved discrete Bees algorithm in remanufacturing,” Robot. Comput. Integr. manuf., vol. 61, Article No. 101829, Feb. 2020. doi: 10.1016/j.rcim.2019.101829
    [98]
    F. Tao, L. N. Bi, Y. Zuo, and A. Y. Nee, “Partial/parallel disassembly sequence planning for complex products,” J. Manuf. Sci. Eng., vol. 140, no. 1, Article No. 011016, Jan. 2018. doi: 10.1115/1.4037608
    [99]
    K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197, Apr. 2002. doi: 10.1109/4235.996017
    [100]
    Q. F. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm based on decomposition,” IEEE Trans. Evol. Comput., vol. 11, no. 6, pp. 712–731, Dec. 2007. doi: 10.1109/TEVC.2007.892759
    [101]
    M. Ali, P. Siarry, and M. Pant, “An efficient differential evolution based algorithm for solving multi-objective optimization problems,” Eur. J. Oper. Res., vol. 217, no. 2, pp. 404–416, Mar. 2012.
    [102]
    J. L. Rickli and J. A. Camelio, “Multi-objective partial disassembly optimization based on sequence feasibility,” J. Manuf. Syst., vol. 32, no. 1, pp. 281–293, Jan. 2013. doi: 10.1016/j.jmsy.2012.11.005
    [103]
    Y. P. Ren, G. D. Tian, F. Zhao, D. Y. Yu, and C. Y. Zhang, “Selective cooperative disassembly planning based on multi-objective discrete artificial bee colony algorithm,” Eng. Appl. Artif. Intell., vol. 64, pp. 415–431, Sep. 2017. doi: 10.1016/j.engappai.2017.06.025
    [104]
    X. W. Guo, S. X. Liu, D. Z. Wang, and C. M. Hou, “An improved multi-objective scatter search approach for solving selective disassembly optimization problem,” in Proc. 31st Chinese Control Conf., Hefei, China, 2012, pp. 7703–7708.
    [105]
    X. W. Guo, M. C. Zhou, S. X. Liu, and L. Qi, “Lexicographic multiobjective scatter search for the optimization of sequence-dependent selective disassembly subject to multiresource constraints,” IEEE Trans. Cybern., vol. 50, no. 7, pp. 3307–3317, Jul. 2020. doi: 10.1109/TCYB.2019.2901834
    [106]
    X. W. Guo, M. C. Zhou, S. X. Liu, and L. Qi, “Multiresource-constrained selective disassembly with maximal profit and minimal energy consumption,” IEEE Trans. Autom. Sci. Eng., vol. 18, no. 2, pp. 804–816, Apr. 2021.
    [107]
    Y. Tang and M. Turowski, “Adaptive fuzzy system for disassembly process planning with uncertainty,” J. Chin. Inst. Ind. Eng., vol. 24, no. 1, pp. 20–29, Jan. 2007.
    [108]
    A. Xanthopoulos and E. Iakovou, “On the optimal design of the disassembly and recovery processes,” Waste Manage., vol. 29, no. 5, pp. 1702–1711, May 2009. doi: 10.1016/j.wasman.2008.11.009
    [109]
    R. J. Liu, G. D. Tian, X. Y. Zhang, A. Y. Zhao, X. L. Wang, and Q. N. Niu, “Disassembly sequence optimization for automotive product based on probabilistic planning method,” in Proc. Int. Conf. Consumer Electronics, Communications and Networks, Xianning, China, 2011, pp. 284–288.
    [110]
    Y. Tang, “Learning-based disassembly process planner for uncertainty management,” IEEE Trans. Syst. Man Cybern. A Syst. Hum., vol. 39, no. 1, pp. 134–143, Jan. 2009. doi: 10.1109/TSMCA.2008.2007990
    [111]
    S. Behdad, A. S. Williams, and D. Thurston, “End-of-Life decision making with uncertain product return quantity,” J. Mech. Des., vol. 134, no. 10, Article No. 100902, Oct. 2012. doi: 10.1115/1.4007394
    [112]
    G. D. Tian, Y. M. Liu, H. Ke, and J. W. Chu, “Energy evaluation method and its optimization models for process planning with stochastic characteristics: A case study in disassembly decision-making,” Comput. Ind. Eng., vol. 63, no. 3, pp. 553–563, Nov. 2012. doi: 10.1016/j.cie.2011.08.011
    [113]
    G. D. Tian, Y. M. Liu, Q. Z. Tian, and J. W. Chu, “Evaluation model and algorithm of product disassembly process with stochastic feature,” Clean Technol. Environ. Policy, vol. 14, no. 2, pp. 345–356, Apr. 2012. doi: 10.1007/s10098-011-0406-9
    [114]
    G. D. Tian, J. W. Chu, and T. G. Qiang, “Influence factor analysis and prediction models for component removal time in manufacturing,” Proc. Inst. Mech. Eng. B J. Eng. Manuf., vol. 227, no. 10, pp. 1533–1540, Oct. 2013. doi: 10.1177/0954405413489292
    [115]
    G. D. Tian, T. G. Qiang, J. W. Chu, G. Xu, and W. Zhou, “Efficiency optimization for disassembly tools via using NN-GA approach,” Math. Probl. Eng., vol. 2013, Article No. 173736, Nov. 2013.
    [116]
    G. D. Tian, M. C. Zhou, J. W. Chu, and Y. M. Liu, “Probability evaluation models of product disassembly cost subject to random removal time and different removal labor cost,” IEEE Trans. Autom. Sci. Eng., vol. 9, no. 2, pp. 288–295, Apr. 2012. doi: 10.1109/TASE.2011.2176489
    [117]
    G. D. Tian, M. C. Zhou, and J. W. Chu, “A chance constrained programming approach to determine the optimal disassembly sequence,” IEEE Trans. Autom. Sci. Eng., vol. 10, no. 4, pp. 1004–1013, Oct. 2013. doi: 10.1109/TASE.2013.2249663
    [118]
    J. L. Rickli and J. A. Camelio, “Partial disassembly sequencing considering acquired end-of-life product age distributions,” Int. J. Prod. Res., vol. 52, no. 24, pp. 7496–7512, Sep. 2014. doi: 10.1080/00207543.2014.939237
    [119]
    X. J. Zhou, K. M. Huang, L. F. Xi, and J. Lee, “Preventive maintenance modeling for multi-component systems with considering stochastic failures and disassembly sequence,” Rel. Eng. Syst. Saf., vol. 142, pp. 231–237, Oct. 2015. doi: 10.1016/j.ress.2015.05.005
    [120]
    A. Gungor and S. M. Gupta, “Issues in environmentally conscious manufacturing and product recovery: A survey,” Comput. Ind. Eng., vol. 36, no. 4, pp. 811–853, Sep. 1999. doi: 10.1016/S0360-8352(99)00167-9
    [121]
    M. L. Bentaha, O. Battaïa, A. Dolgui, and S. J. Hu, “Second order conic approximation for disassembly line design with joint probabilistic constraints,” Eur. J. Opera. Res., vol. 247, no. 3, pp. 957–967, Dec. 2015. doi: 10.1016/j.ejor.2015.06.019
    [122]
    Y. L. Fang, H. Ming, M. Q. Li, Q. Liu, and D. T. Pham, “Multi-objective evolutionary simulated annealing optimisation for mixed-model multi-robotic disassembly line balancing with interval processing time,” Int. J. Prod. Res., vol. 58, no. 3, pp. 846–862, 2020. doi: 10.1080/00207543.2019.1602290
    [123]
    S. Ghandi and E. Masehian, “Review and taxonomies of assembly and disassembly path planning problems and approaches,” Comput. Aided Des., vol. 67–68, pp. 58–86, Oct. 2015. doi: 10.1016/j.cad.2015.05.001
    [124]
    H. J. Kim, D. H. Lee, and P. Xirouchakis, “Disassembly scheduling: Literature review and future research directions,” Int. J. Prod. Res., vol. 45, no. 18–19, pp. 4465–4484, Dec. 2007. doi: 10.1080/00207540701440097
    [125]
    O. Ondemir and S. M. Gupta, “Quality management in product recovery using the Internet of Things: An optimization approach,” Comput. Ind., vol. 65, no. 3, pp. 491–504, Apr. 2014. doi: 10.1016/j.compind.2013.11.006
    [126]
    N. Wu and Q. J. Peng, “Maintainability evaluation based on the product disassembly analysis,” in Proc. ASME Int. Design Engineering Technical Conf. and Computers and Information in Engineering Conf., San Diego, USA, 2009, pp. 101–109.
    [127]
    G. D. Tian, M. C. Zhou, and P. G. Li, “Disassembly sequence planning considering fuzzy component quality and varying operational cost,” IEEE Trans. Autom. Sci. Eng., vol. 15, no. 2, pp. 748–760, Apr. 2018. doi: 10.1109/TASE.2017.2690802
    [128]
    G. D. Tian, J. W. Chu, H. S. Hu, and H. L. Li, “Technology innovation system and its integrated structure for automotive components remanufacturing industry development in China,” J. Clean. Prod., vol. 85, pp. 419–432, Dec. 2014. doi: 10.1016/j.jclepro.2014.09.020
    [129]
    G. D. Tian, Y. P. Ren, Y. X. Feng, M. C. Zhou, H. H. Zhang, and J. R. Tan, “Modeling and planning for dual-objective selective disassembly using AND/OR graph and discrete artificial bee colony,” IEEE Trans. Ind. Inform., vol. 15, no. 4, pp. 2456–2468, Apr. 2019. doi: 10.1109/TII.2018.2884845
    [130]
    J. M. Garibaldi, “The need for fuzzy AI,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 3, pp. 610–622, May 2019. doi: 10.1109/JAS.2019.1911465
    [131]
    M. Ghahramani, Y. Qiao, M. C. Zhou, A. O’Hagan, and J. Sweeney, “AI-based modeling and data-driven evaluation for smart manufacturing processes,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 1026–1037, Jul. 2020. doi: 10.1109/JAS.2020.1003114
    [132]
    Y. P. Ren, C. Y. Zhang, F. Zhao, M. J. Triebe, and L. L. Meng, “An MCDM-Based multiobjective general variable neighborhood search approach for disassembly line balancing problem,” IEEE Trans. Syst. Man Cybern. A Syst. Hum., vol. 50, no. 10, pp. 3770–3783, Oct. 2020.
    [133]
    S. C. Gao, M. C. Zhou, Y. R. Wang, J. J. Cheng, H. Yachi, and J. H. Wang, “Dendritic neuron model with effective learning algorithms for classification, approximation and prediction,” IEEE Trans Neural Networks and Learning Systems, vol. 30, no. 2, pp. 601–614, Feb. 2019.
    [134]
    H. T. Yuan, M. C. Zhou, Q. Liu, and A. Abusorrah, “Fine-grained resource provisioning and task scheduling for heterogeneous applications in distributed green clouds,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1380–1393, Sept. 2020.
    [135]
    H. T. Yuan and M. C. Zhou, “Profit-maximized collaborative computation offloading and resource allocation in distributed cloud and edge computing systems,” IEEE Trans Autom. Science and Engineering, 2020.
    [136]
    P. Y. Zhang, M. C. Zhou, and G. Fortino, “Security and trust issues in fog computing: A survey,” Future Generation Computer Systems, vol. 88, pp. 16–27, Nov. 2018.
    [137]
    K. Bekiroglu, S. Srinivasan, E. Png, R. Su and C. Lagoa, “Recursive approximation of complex behaviours with IoT-data imperfections,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 3, pp. 656–667, May 2020.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (1082) PDF downloads(77) Cited by()

    Highlights

    • It attempts to discuss journal and conference papers with an emphasis on recent work. Scholars and engineers investigate DSP with a diversity of interests. This review presents an analysis of disassembly sequences to help decision makers engage in product recovery and reuse activities. Over 100 scientific papers published between 2007 and 2020 are reviewed in this work.
    • Modeling methods include graphical ones such as graph-based modeling, AND/OR graph, Petri nets and matrix-based models. All the possible disassembly sequences can be generated by using these modeling methods. This is followed by the search for reasonable and optimized disassembly sequences, which can be done according to heuristics. In addition, the advantages and disadvantages of these modeling methods are summarized.
    • Mathematical programming and optimization methods are presented, which are the main content of this paper. AI methods are also discussed to solve a DSP problem, for example, genetic algorithm (GA), ant colony optimizer, scatter search (SS) and particle swarm optimizer. Their advantages and disadvantages are summarized in this work.
    • In an EOL product, uncertainty plays an important role. Physical properties of the connections are considered, for instance, friction, or simply by restricting the number of degrees of freedom. Uncertainty theory and methods are discussed and used to solve a stochastic DSP problem.

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return