IEEE/CAA Journal of Automatica Sinica
Citation:  Zhaofeng Liu, Ren Zheng, Wenlian Lu and Shouhuai Xu, "Using EventBased Method to Estimate Cybersecurity Equilibrium," IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 455467, Feb. 2021. doi: 10.1109/JAS.2020.1003527 
[1] 
K. J. Åström and B. Bernhardsson, “Comparison of periodic and event based sampling for firstorder stochastic systems,” IFAC Proc. Vol., vol. 32, no. 2, pp. 5006–5011, Jul. 1999. doi: 10.1016/S14746670(17)568524

[2] 
K. E. Åarzén, “A simple eventbased PID controller,” IFAC Proc. Vol., vol. 32, no. 2, pp. 8687–8692, Jul. 1999. doi: 10.1016/S14746670(17)574820

[3] 
K. H. Johansson, M. Egerstedt, J. Lygeros, and S. Sastry, “On the regularization of zeno hybrid automata,” Syst. Control Lett., vol. 38, no. 3, pp. 141–150, Oct. 1999. doi: 10.1016/S01676911(99)000596

[4] 
R. Zheng, W. L. Lu, and S. H. Xu, “Preventive and reactive cyber defense dynamics is globally stable,” IEEE Trans. Netw. Sci. Eng., vol. 5, no. 2, pp. 156–170, Apr. 2018. doi: 10.1109/TNSE.2017.2734904

[5] 
S. H. Xu, “Cybersecurity dynamics,” in Proc. Symp. and Bootcamp on the Science of Security, Raleigh, USA, 2014, pp. 14.

[6] 
S. H. Xu, “Cybersecurity dynamics: A foundation for the science of cybersecurity,” in Proactive and Dynamic Network Defense, C. Wang and Z. Lu, Eds. Cham, Switzerland: Springer, 2019, pp. 1–31.

[7] 
K. J. Astrom and B. M. Bernhardsson, “Comparison of riemann and lebesgue sampling for first order stochastic systems,” in Proc. 41st IEEE Conf. Decision and Control, Las Vegas, USA, 2002, pp. 2011–2016.

[8] 
P. Tabuada, “Eventtriggered realtime scheduling of stabilizing control tasks,” IEEE Trans. Autom. Control, vol. 52, no. 9, pp. 1680–1685, Sep. 2007. doi: 10.1109/TAC.2007.904277

[9] 
W. P. M. H. Heemels, K. H. Johansson, and P. Tabuada, “An introduction to eventtriggered and selftriggered control,” in Proc. 51st IEEE Conf. Decision and Control, Maui, USA, 2012, pp. 3270–3285.

[10] 
D. R. Ding, Z. D. Wang, and Q. L. Han, “A setmembership approach to eventtriggered filtering for general nonlinear systems over sensor networks,” IEEE Trans. Autom. Control, vol. 65, no. 4, pp. 1792–1799, Apr. 2020. doi: 10.1109/TAC.2019.2934389

[11] 
E. Johannesson, T. Henningsson, and A. Cervin, “Sporadic control of firstorder linear stochastic systems,” in Hybrid Systems: Computation and Control, A. Bemporad, A. Bicchi, and G. Buttazzo, Eds. Berlin, Heidelberg, Germany: Springer, 2007, pp. 301–314.

[12] 
X. F. Wang and M. D. Lemmon, “Eventtriggering in distributed networked control systems,” IEEE Trans. Autom. Control, vol. 56, no. 3, pp. 586–601, Mar. 2011. doi: 10.1109/TAC.2010.2057951

[13] 
D. V. Dimarogonas, E. Frazzoli, and K. H. Johansson, “Distributed eventtriggered control for multiagent systems,” IEEE Trans. Autom. Control, vol. 57, no. 5, pp. 1291–1297, May 2012. doi: 10.1109/TAC.2011.2174666

[14] 
G. S. Seyboth, D. V. Dimarogonas, and K. H. Johansson, “Eventbased broadcasting for multiagent average consensus,” Automatica, vol. 49, no. 1, pp. 245–252, Jan. 2013. doi: 10.1016/j.automatica.2012.08.042

[15] 
W. L. Lu, Y. J. Han, and T. P. Chen, “Pinning networks of coupled dynamical systems with Markovian switching couplings and eventtriggered diffusions,” J. Franklin Inst., vol. 352, no. 9, pp. 3526–3545, Sep. 2015. doi: 10.1016/j.jfranklin.2015.01.022

[16] 
Y. J. Han, W. L. Lu, and T. P. Chen, “Consensus analysis of networks with timevarying topology and eventtriggered diffusions,” Neural Netw., vol. 71, pp. 196–203, Nov. 2015. doi: 10.1016/j.neunet.2015.08.008

[17] 
W. L. Lu, Y. J. Han, and T. P. Chen, “Synchronization in networks of linearly coupled dynamical systems via eventtriggered diffusions,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 12, pp. 3060–3069, Dec. 2015. doi: 10.1109/TNNLS.2015.2402691

[18] 
R. Zheng, X. L. Yi, W. L. Lu, and T. P. Chen, “Stability of analytic neural networks with eventtriggered synaptic feedbacks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 2, pp. 483–494, Feb. 2016. doi: 10.1109/TNNLS.2015.2488903

[19] 
W. L. Lu, R. Zheng, and T. P. Chen, “Centralized and decentralized global outersynchronization of asymmetric recurrent timevarying neural network by datasampling,” Neural Netw., vol. 75, pp. 22–31, Mar. 2016. doi: 10.1016/j.neunet.2015.11.006

[20] 
X. H. Li, T. Parker, and S. H. Xu, “Towards quantifying the (in)security of networked systems,” in Proc. 21st Int. Conf. Advanced Information Networking and Applications, Niagara Falls, Canada, 2007, pp. 420–427.

[21] 
A. G. M’Kendrick, “Applications of mathematics to medical problems,” Proc. Edinb. Math. Soc., vol. 44, pp. 98–130, Feb. 1925. doi: 10.1017/S0013091500034428

[22] 
W. O. Kermack and A. G. McKendrick, “A contribution to the mathematical theory of epidemics,” Proc. Roy. Soc. A:Math.,Phys. Eng. Sci., vol. 115, no. 772, pp. 700–721, Aug. 1927.

[23] 
N. T. J. Bailey, The Mathematical Theory of Infectious Diseases and Its Applications. 2nd ed. London, UK: Hodder Arnold, 1975.

[24] 
R. M. Anderson and R. M. May, Infectious Diseases of Humans. Oxford, UK: Oxford University Press, 1991.

[25] 
H. W. Hethcote, “The mathematics of infectious diseases,” SIAM Rev., vol. 42, no. 4, pp. 599–653, Jan. 2000. doi: 10.1137/S0036144500371907

[26] 
J. O. Kephart and S. R. White, “Directedgraph epidemiological models of computer viruses,” in Proc. IEEE Computer Society Symp. Research in Security and Privacy, Oakland, USA, 1991, pp. 343–359.

[27] 
J. O. Kephart and S. R. White, “Measuring and modeling computer virus prevalence,” in Proc. IEEE Computer Society Symp. Research in Security and Privacy, Oakland, USA, 1993, pp. 2–15.

[28] 
R. PastorSatorras and A. Vespignani, “Epidemic dynamics and endemic states in complex networks,” Phys. Rev. E, vol. 63, pp. 066117, May 2001. doi: 10.1103/PhysRevE.63.066117

[29] 
Y. Moreno, R. PastorSatorras, and A. Vespignani, “Epidemic outbreaks in complex heterogeneous networks,” Eur. Phys. J. B, vol. 26, no. 4, pp. 521–529, Apr. 2002.

[30] 
R. PastorSatorras and A. Vespignani, “Epidemic dynamics in finite size scalefree networks,” Phys. Rev. E, vol. 65, pp. 035108, Mar. 2002. doi: 10.1103/PhysRevE.65.035108

[31] 
M. E. J. Newman, “The structure and function of complex networks,” SIAM Rev., vol. 45, no. 2, pp. 167–256, Jan. 2003. doi: 10.1137/S003614450342480

[32] 
A. Barrat, M. Barthélemy, and A. Vespignani, Dynamical Processes on Complex Networks. Cambridge, UK: Cambridge University Press, 2008.

[33] 
Y. Wang, D. Chakrabarti, C. X. Wang, and C. Faloutsos, “Epidemic spreading in real networks: An eigenvalue viewpoint,” in Proc. 22nd IEEE Int. Symp. Reliable Distributed Systems, Florence, Italy, 2003, pp. 25–34.

[34] 
A. Ganesh, L. Massoulie, and D. Towsley, “The effect of network topology on the spread of epidemics,” in Proc. 24th IEEE Annu. Joint Conf. IEEE Computer and Communications Societies, Miami, USA, 2005, pp. 1455–1466.

[35] 
D. Chakrabarti, Y. Wang, C. X. Wang, J. Leskovec, and C. Faloutsos, “Epidemic thresholds in real networks,” ACM Trans. Inf. Syst. Secur., vol. 10, no. 4, pp. 13, Jan. 2008.

[36] 
P. Van Mieghem, J. Omic, and R. Kooij, “Virus spread in networks,” IEEE/ACM Trans. Netw., vol. 17, no. 1, pp. 1–14, Feb. 2009. doi: 10.1109/TNET.2008.925623

[37] 
T. M. Liggett, Interacting Particle Systems. New York: USA: Springer, 1985.

[38] 
K. D. Hoover, “Idealizing reduction: The microfoundations of macroeconomics,” Erkenntnis, vol. 73, no. 3, pp. 329–347, Nov. 2010. doi: 10.1007/s1067001092351

[39] 
Y. J. Han, W. L. Lu, and S. H. Xu, “Preventive and reactive cyber defense dynamics with ergodic timedependent parameters is globally attractive,” arXiv: 2001.07958, Jan. 2020.

[40] 
Z. Z. Lin, W. L. Lu, and S. H. Xu, “Unified preventive and reactive cyber defense dynamics is still globally convergent,” IEEE/ACM Trans. Netw., vol. 27, no. 3, pp. 1098–1111, Jun. 2019. doi: 10.1109/TNET.2019.2912847

[41] 
M. C. Xu, G. F. Da, and S. H. Xu, “Cyber epidemic models with dependences,” Internet Math., vol. 11, no. 1, pp. 62–92, Jan. 2015. doi: 10.1080/15427951.2014.902407

[42] 
S. H. Xu, “Emergent behavior in cybersecurity,” in Proc. Symp. and Bootcamp on the Science of Security, Raleigh, USA, 2014, pp. 13.

[43] 
Y. J. Han, W. L. Lu, and S. H. Xu, “Characterizing the power of moving target defense via cyber epidemic dynamics,” in Proc. Symp. and Bootcamp on the Science of Security, Raleigh, USA, 2014, pp. 10.

[44] 
G. F. Da, M. C. Xu, and S. H. Xu, “A new approach to modeling and analyzing security of networked systems,” in Proc. Symp. and Bootcamp on the Science of Security, Raleigh, USA, 2014, pp. 6.

[45] 
S. H. Xu, W. L. Lu, L. Xu, and Z. X. Zhan, “Adaptive epidemic dynamics in networks: Thresholds and control,” ACM Trans. Auton. Adapt. Syst., vol. 8, no. 4, pp. 19, Jan. 2014.

[46] 
S. H. Xu, W. L. Lu, and Z. X. Zhan, “A stochastic model of multivirus dynamics,” IEEE Trans. Depend. Secure Comput., vol. 9, no. 1, pp. 30–45, Jan.–Feb. 2012. doi: 10.1109/TDSC.2011.33

[47] 
M. C. Xu and S. H. Xu, “An extended stochastic model for quantitative security analysis of networked systems,” Internet Math., vol. 8, no. 3, pp. 288–320, Jul. 2012.

[48] 
S. H. Xu, W. L. Lu, and L. Xu, “Push and pullbased epidemic spreading in networks: Thresholds and deeper insights,” ACM Trans. Auton. Adapt. Syst., vol. 7, no. 3, pp. 32, Oct. 2012.

[49] 
S. H. Xu, “The cybersecurity dynamics way of thinking and landscape,” in Proc. 7th ACM Workshop on Moving Target Defense (ACM MTD’2020), Orlando, USA, pp. 69–80, Nov. 2020.

[50] 
X. H. Li, P. Parker, and S. H. Xu, “A stochastic model for quantitative security analyses of networked systems,” IEEE Trans. Depend. Secure Comput., vol. 8, no. 1, pp. 28–43, Jan.–Feb. 2011. doi: 10.1109/TDSC.2008.75

[51] 
J. D. Mireles, E. Ficke, J. H. Cho, P. Hurley, and S. H. Xu, “Metrics towards measuring cyber agility,” IEEE Trans. Inf. Foren. Secur., vol. 14, no. 12, pp. 3217–3232, Dec. 2019. doi: 10.1109/TIFS.2019.2912551

[52] 
J. H. Cho, S. H. Xu, P. M. Hurley, M. Mackay, T. Benjamin, and M. Beaumont, “STRAM: Measuring the trustworthiness of computerbased systems,” ACM Comput. Surv., vol. 51, no. 6, pp. 128, Feb. 2019.

[53] 
M. Pendleton, R. GarciaLebron, J. H. Cho, and S. H. Xu, “A survey on systems security metrics,” ACM Comput. Surv., vol. 49, no. 4, pp. 62, Dec. 2016.

[54] 
H. S. Chen, J. H. Cho, and S. H. Xu, “Quantifying the security effectiveness of network diversity: Poster,” in Proc. 5th Annu. Symp. and Bootcamp on Hot Topics in the Science of Security, Raleigh, USA, 2018, pp. 24.

[55] 
H. S. Chen, J. H. Cho, and S. H. Xu, “Quantifying the security effectiveness of firewalls and DMZs,” in Proc. 5th Annu. Symp. and Bootcamp on Hot Topics in the Science of Security, Raleigh, USA, 2018, pp. 9.

[56] 
R. Zheng, W. L. Lu, and S. H. Xu, “Active cyber defense dynamics exhibiting rich phenomena,” in Proc. Symp. and Bootcamp on the Science of Security, Urbana, USA, 2015, pp. 2.

[57] 
S. H. Xu, W. L. Lu, and H. L. Li, “A stochastic model of active cyber defense dynamics,” Internet Math., vol. 11, no. 1, pp. 23–61, Jan. 2015. doi: 10.1080/15427951.2013.830583

[58] 
W. L. Lu, S. H. Xu, and X. L. Yi, “Optimizing active cyber defense,” in Proc. 4th Int. Conf. Decision and Game Theory for Security, Fort Worth, USA, 2013, pp. 206–225.

[59] 
A. Sard, “The measure of the critical values of differentiable maps,” Bull. Am. Math. Soc., vol. 48, no. 12, pp. 883–890, 1999.
