IEEE/CAA Journal of Automatica Sinica
Citation:  Di Wu and Xin Luo, "Robust Latent Factor Analysis for Precise Representation of HighDimensional and Sparse Data," IEEE/CAA J. Autom. Sinica, vol. 8, no. 4, pp. 796805, Apr. 2021. doi: 10.1109/JAS.2020.1003533 
[1] 
R. Q. Lu, X. L. Jin, S. M. Zhang, M. K. Qiu, and X. D. Wu, “A study on big knowledge and its engineering issues,” IEEE Trans. Knowl. Data Eng., vol. 31, no. 9, pp. 1630–1644, Sep. 2019. doi: 10.1109/TKDE.2018.2866863

[2] 
S. C. Gao, M. C. Zhou, Y. R. Wang, J. J. Cheng, H. Yachi, and J. H. Wang, “Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 2, pp. 601–614, Feb. 2019. doi: 10.1109/TNNLS.2018.2846646

[3] 
D. P. Bertsekas, “Featurebased aggregation and deep reinforcement learning: A survey and some new implementations,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 1–31, Jan. 2019. doi: 10.1109/JAS.2018.7511249

[4] 
H. Zahid, T. Mahmood, A. Morshed, and T. Sellis, “Big data analytics in telecommunications: Literature review and architecture recommendations,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 18–38, Jan. 2020.

[5] 
Y. F. Ma, Z. Y. Wang, H. Yang, and L. Yang, “Artificial intelligence applications in the development of autonomous vehicles: A survey,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 315–329, Mar. 2020. doi: 10.1109/JAS.2020.1003021

[6] 
D. Ryu, K. Lee, and J. Baik, “Locationbased web service QoS prediction via preference propagation to address cold start problem,” IEEE Trans. Serv. Comput., to be published. DOI: 10.1109/TSC.2018.2821686

[7] 
X. Luo, Z. G. Liu, S. Li, M. S. Shang, and Z. D. Wang, “A fast nonnegative latent factor model based on generalized momentum method,” IEEE Trans. Syst., Man, Cybern.: Syst., to be published. DOI: 10.1109/TSMC.2018.2875452

[8] 
J. D. Zhang, C. Y. Chow, and J. Xu, “Enabling kernelbased attributeaware matrix factorization for rating prediction,” IEEE Trans. Knowl. Data Eng., vol. 29, no. 4, pp. 798–812, Apr. 2017. doi: 10.1109/TKDE.2016.2641439

[9] 
J. Castro, J. Lu, G. G. Zhang, Y. C. Dong, and L. Martínez, “Opinion dynamicsbased group recommender systems,” IEEE Trans. Syst.,Man,Cybern.:Syst., vol. 48, no. 12, pp. 2394–2406, Dec. 2018. doi: 10.1109/TSMC.2017.2695158

[10] 
B. Smith and G. Linden, “Two decades of recommender systems at Amazon.com,” IEEE Int. Comput., vol. 21, no. 3, pp. 12–18, MayJun. 2017. doi: 10.1109/MIC.2017.72

[11] 
M. G. Gong, X. M. Jiang, H. Li, and K. C. Tan, “Multiobjective sparse nonnegative matrix factorization,” IEEE Trans. Cybern., vol. 49, no. 8, pp. 2941–2954, Aug. 2019. doi: 10.1109/TCYB.2018.2834898

[12] 
X. N. He, J. H. Tang, X. Y. Du, R. C. Hong, T. W. Ren, and T. S. Chua, “Fast matrix factorization with nonuniform weights on missing data,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 8, pp. 2791–2804, Aug. 2020. doi: 10.1109/TNNLS.2018.2890117

[13] 
X. Luo, M. C. Zhou, Y. N. Xia, and Q. S. Zhu, “An efficient nonnegative matrixfactorizationbased approach to collaborative filtering for recommender systems,” IEEE Trans. Ind. Inform., vol. 10, no. 2, pp. 1273–1284, May 2014. doi: 10.1109/TII.2014.2308433

[14] 
Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for recommender systems,” Computer, vol. 42, no. 8, pp. 30–37, Aug. 2009. doi: 10.1109/MC.2009.263

[15] 
X. Luo, M. C. Zhou, S. Li, Z. H. You, Y. N. Xia, and Q. S. Zhu, “A nonnegative latent factor model for largescale sparse matrices in recommender systems via alternating direction method,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 3, pp. 579–592, Mar. 2016. doi: 10.1109/TNNLS.2015.2415257

[16] 
D. Wu, Q. He, X. Luo, M. S. Shang, Y. He, and G. Y. Wang, “A Posteriorneighborhoodregularized latent factor model for highly accurate web service QoS prediction,” IEEE Trans. Serv. Comput., to be published. DOI: 10.1109/TSC.2019.2961895

[17] 
M. S. Shang, X. Luo, Z. G. Liu, J. Chen, Y. Yuan, and M. C. Zhou, “Randomized latent factor model for highdimensional and sparse matrices from industrial applications,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 131–141, Jan. 2019. doi: 10.1109/JAS.2018.7511189

[18] 
C. C. Leng, H. Zhang, G. R. Cai, I. Cheng, and A. Basu, “Graph regularized Lp smooth nonnegative matrix factorization for data representation,” IEEE/CAA J. Automa. Sinica, vol. 6, no. 2, pp. 584–595, Mar. 2019. doi: 10.1109/JAS.2019.1911417

[19] 
X. K. Zhu, X. Y. Jing, D. Wu, Z. Y. He, J. C. Cao, D. Yue, and L. N. Wang, “Similaritymaintaining privacy preservation and Locationaware Lowrank matrix factorization for QoS prediction based web service recommendation,” IEEE Trans. Serv. Comput., to be published. DOI: 10.1109/TSC.2018.2839741

[20] 
L. Wang, M. D. Gordon, and J. Zhu, “Regularized least absolute deviations regression and an efficient algorithm for parameter tuning,” in Proc. 6th IEEE Int. Conf. Data Mining, Hong Kong, China, 2006, pp. 690–700.

[21] 
W. T. Ma, N. Li, Y. H. Li, J. D. Duan, and B. D. Chen, “Sparse normalized least mean absolute deviation algorithm based on unbiasedness criterion for system Identification with noisy input,” IEEE Access, vol. 6, pp. 14379–14388, Feb. 2018. doi: 10.1109/ACCESS.2018.2800278

[22] 
Q. F. Ke and T. Kanade, “Robust subspace computation using L1 norm: School of computer science,” Carnegie Mellon University, Pittsburgh, PA, CMUCS03172, Aug. 2003.

[23] 
R. Koenker and K. F. Hallock, “Quantile regression,” J. Econom. Perspect., vol. 15, no. 4, pp. 143–156, 2001. doi: 10.1257/jep.15.4.143

[24] 
C. Wu, W. W. Qiu, Z. B. Zheng, X. Y. Wang, and X. H. Yang, “Qos prediction of web services based on twophase Kmeans clustering,” in Proc. IEEE Int. Conf. Web Services, New York, USA, 2015, pp. 161–168.

[25] 
B. Lakshminarayanan, G. Bouchard, and C. Archambeau, “Robust Bayesian matrix factorisation,” in Proc. the 14th Int. Conf. Artificial Intelligence and Statistics, Ft. Lauderdale, USA, 2011, pp. 425–433.

[26] 
D. Wu, Y. He, X. Luo, M. S. Shang, and X. D. Wu, “Online feature selection with capricious streaming features: A general framework,” in Proc. IEEE Int. Conf. Big Data, Los Angeles, USA, 2019, pp. 683–688.

[27] 
Y. Yuan, X. Luo, and M. S. Shang, “Effects of preprocessing and training biases in latent factor models for recommender systems,” Neurocomputing, vol. 275, pp. 2019–2030, Jan. 2018. doi: 10.1016/j.neucom.2017.10.040

[28] 
Y. Koren and R. Bell, “Advances in collaborative filtering,” in Recommender Systems Handbook, F. Ricci, L. Rokach, B. Shapira, P. B. Kantor, Eds. Boston, USA: Springer, 2015, pp. 77–118.

[29] 
P. Massa and P. Avesani, “Trustaware recommender systems,” in Proc. ACM Conf. Recommender Systems, Minneapolis, USA, 2007, pp. 17–24.

[30] 
L. Brozovsky and V. Petricek, “Recommender system for online dating service,” arXiv: cs/0703042, 2007.

[31] 
Y. Shi, M. Larson, and A. Hanjalic, “Collaborative filtering beyond the useritem matrix: A survey of the state of the art and future challenges,” ACM Comput. Surv., vol. 47, no. 1, Article No. 3, May 2014.

[32] 
K. Goldberg, T. Roeder, D. Gupta, and C. Perkins, “Eigentaste: A constant time collaborative filtering algorithm,” Inform. Retrieval, vol. 4, no. 2, pp. 133–151, Jul. 2001. doi: 10.1023/A:1011419012209

[33] 
J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon, and J. Riedl, “GroupLens: Applying collaborative filtering to Usenet news,” Commun. ACM, vol. 40, no. 3, pp. 77–87, Mar. 1997. doi: 10.1145/245108.245126

[34] 
S. Zhang, L. N. Yao, A. X. Sun, and Y. Tay, “Deep learning based recommender system: A survey and new perspectives,” ACM Comput. Surv., vol. 52, no. 1, Article No. 5, Feb. 2019.

[35] 
D. Wu, X. Luo, M. S. Shang, Y. He, G. Y. Wang, and X. D. Wu, “A datacharacteristicaware latent factor model for web services QoS prediction,” IEEE Trans. Knowl. Data Eng., to be published. DOI: 10.1109/TKDE.2020.3014302

[36] 
P. Y. Zhang, S. Shu, and M. C. Zhou, “An online fault detection model and strategies based on SVMGrid in clouds,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 445–456, Mar. 2018. doi: 10.1109/JAS.2017.7510817

[37] 
S. Sedhain, A. K. Menon, S. Sanner, and L. X. Xie, “AutoRec: Autoencoders meet collaborative filtering,” in Proc. the 24th Int. Conf. World Wide Web, Florence, Italy, 2015, pp. 111–112.

[38] 
Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, Article no. 7553, pp. 436−444, May 2015.

[39] 
Q. X. Wang, B. B. Peng, X. Y. Shi, T. Q. Shang, and M. S. Shang, “DCCR: Deep collaborative conjunctive recommender for rating prediction,” IEEE Access, vol. 7, pp. 60186–60198, May 2019. doi: 10.1109/ACCESS.2019.2915531

[40] 
J. Demšar, “Statistical comparisons of classifiers over multiple data sets,” J. Mach. Learn. Res., vol. 7, pp. 1–30, Dec. 2006.

[41] 
B. Rosner, R. J. Glynn, and M. L. T. Lee, “The Wilcoxon signed rank test for paired comparisons of clustered data,” Biometrics, vol. 62, no. 1, pp. 185–192, Mar. 2006. doi: 10.1111/j.15410420.2005.00389.x

[42] 
D. Wu, X. Luo, G. Y. Wang, M. S. Shang, Y. Yuan, and H. Y. Yan, “A highly accurate framework for selflabeled semisupervised classification in industrial applications,” IEEE Trans. Ind. Inform., vol. 14, no. 3, pp. 909–920, Mar. 2018. doi: 10.1109/TII.2017.2737827

[43] 
Z. H. Zhou and J. Feng, “Deep forest: Towards an alternative to deep neural networks,” in Proc. the 26th Int. Joint Conf. on Artificial Intelligence, Melbourne, Australia, 2017, pp. 3553–3559.

[44] 
X. Y. Ren, M. N. Song, E. Haihong, and J. D. Song, “Contextaware probabilistic matrix factorization modeling for pointofinterest recommendation,” Neurocomputing, vol. 241, pp. 38–55, Jun. 2017. doi: 10.1016/j.neucom.2017.02.005

[45] 
H. Wu, Z. X. Zhang, K. Yue, B. B. Zhang, J. He, and L. C. Sun, “Dualregularized matrix factorization with deep neural networks for recommender systems,” Knowl.Based Syst., vol. 145, pp. 46–58, Apr. 2018. doi: 10.1016/j.knosys.2018.01.003

[46] 
C. Wang, Q. Liu, R. Z. Wu, E. H. Chen, C. R. Liu, X. P. Huang, and Z. Y. Huang, "Confidenceaware matrix factorization for recommender systems, " in Proc. the 32nd AAAI Conf. Artificial Intelligence, New Orleans, USA, 2018, pp. 434–442.

[47] 
D. Wu, X. Luo, M. S. Shang, Y. He, G. Y. Wang, and M. C. Zhou, “A deep latent factor model for highdimensional and sparse matrices in recommender systems,” IEEE Trans. Syst., Man, Cybern.: Syst., to be published. DOI: 10.1109/TSMC.2019.2931393

[48] 
K. Yu, S. H. Zhu, J. Lafferty, and Y. H. Gong, “Fast nonparametric matrix factorization for largescale collaborative filtering,” in Proc. the 32nd ACM SIGIR Int. Conf. Research and Development in Information Retrieval, Boston, USA, 2009, pp. 211–218.

[49] 
X. N. He, L. Z. Liao, H. W. Zhang, L. Q. Nie, X. Hu, and T. S. Chua, “Neural collaborative filtering,” in Proc. the 26th Int. Conf. World Wide Web, Perth, Australia, 2017, pp. 173–182.

[50] 
P. J. Li, Z. H. Wang, Z. C. Ren, L. D. Bing, and W. Lam, “Neural rating regression with abstractive tips generation for recommendation,” in Proc. the 40th Int. ACM SIGIR Conf. Research and Development in Information Retrieval, Shinjuku, Japan, 2017, pp. 345–354.

[51] 
X. N. He and T. S. Chua, “Neural factorization machines for sparse predictive analytics,” in Proc. the 40th Int. ACM SIGIR Conf. Research and Development in Information Retrieval, Shinjuku, Japan, 2017, pp. 355–364.

[52] 
J. Xiao, H. Ye, X. N. He, H. W. Zhang, F. Wu, and T. S. Chua, “Attentional factorization machines: Learning the weight of feature interactions via attention networks,” in Proc. the 26th Int. Joint. Conf. on Artificial Intelligence, Melbourne, Australia, 2017, pp. 3119–3125.

[53] 
L. Zheng, V. Noroozi, and P. S. Yu, “Joint deep modeling of users and items using reviews for recommendation,” in Proc. the 10th ACM Int. Conf. Web Search and Data Mining, Cambridge, UK, 2017, pp. 425–434.

[54] 
D. Kim, C. Park, J. Oh, S. Lee, and H. Yu, “Convolutional matrix factorization for document contextaware recommendation,” in Proc. the 10th ACM Conf. Recommender Systems, Boston, USA, 2016, pp. 233–240.

[55] 
N. Y. Zeng, Z. D. Wang, H. Zhang, K. E. Kim, Y. R. Li and X. H. Liu, “An improved particle filter with a novel hybrid proposal distribution for quantitative analysis of gold immunochromatographic strips,” IEEE Trans. Nanotechnol., vol. 18, pp. 819–829, Aug. 2019. doi: 10.1109/TNANO.2019.2932271

[56] 
N. Y. Zeng, Z. D. Wang, B. Zineddin, Y. R. Li, M. Du, L. Xiao, X. H. Liu, and T. Young, “Imagebased quantitative analysis of gold immunochromatographic strip via cellular neural network approach,” IEEE Trans. Med. Imag., vol. 33, no. 5, pp. 1129–1136, May 2014. doi: 10.1109/TMI.2014.2305394

[57] 
N. Y. Zeng, H. Li, Z. D. Wang, W. B. Liu, S. M. Liu, F. E. Alsaadi, and X. H. Liu, “Deepreinforcementlearningbased images segmentation for quantitative analysis of gold immunochromatographic strip,” Neurocomputing, to be published. DOI: 10.1016/j.neucom.2020.04.001

[58] 
Z. Q. Shu, X. J. Wu, C. Z. You, Z. Liu, P. Li, H. H. Fan, and F. Y. Ye, “Rankconstrained nonnegative matrix factorization for data representation,” Inform. Sci., vol. 528, pp. 133–146, Aug. 2020. doi: 10.1016/j.ins.2020.04.017
