A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 8 Issue 2
Feb.  2021

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 6.171, Top 11% (SCI Q1)
    CiteScore: 11.2, Top 5% (Q1)
    Google Scholar h5-index: 51, TOP 8
Turn off MathJax
Article Contents
Chuang Chen, Ningyun Lu, Bin Jiang and Cunsong Wang, "A Risk-Averse Remaining Useful Life Estimation for Predictive Maintenance," IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 412-422, Feb. 2021. doi: 10.1109/JAS.2021.1003835
Citation: Chuang Chen, Ningyun Lu, Bin Jiang and Cunsong Wang, "A Risk-Averse Remaining Useful Life Estimation for Predictive Maintenance," IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 412-422, Feb. 2021. doi: 10.1109/JAS.2021.1003835

A Risk-Averse Remaining Useful Life Estimation for Predictive Maintenance

doi: 10.1109/JAS.2021.1003835
Funds:  This work was support by Natural Science Foundation of China (61873122)
More Information
  • Remaining useful life (RUL) prediction is an advanced technique for system maintenance scheduling. Most of existing RUL prediction methods are only interested in the precision of RUL estimation; the adverse impact of over-estimated RUL on maintenance scheduling is not of concern. In this work, an RUL estimation method with risk-averse adaptation is developed which can reduce the over-estimation rate while maintaining a reasonable under-estimation level. The proposed method includes a module of degradation feature selection to obtain crucial features which reflect system degradation trends. Then, the latent structure between the degradation features and the RUL labels is modeled by a support vector regression (SVR) model and a long short-term memory (LSTM) network, respectively. To enhance the prediction robustness and increase its marginal utility, the SVR model and the LSTM model are integrated to generate a hybrid model via three connection parameters. By designing a cost function with penalty mechanism, the three parameters are determined using a modified grey wolf optimization algorithm. In addition, a cost metric is proposed to measure the benefit of such a risk-averse predictive maintenance method. Verification is done using an aero-engine data set from NASA. The results show the feasibility and effectiveness of the proposed RUL estimation method and the predictive maintenance strategy.


  • loading
  • [1]
    C. Hu, H. Pei, X. Si, D. Du, Z. Pang, and X. Wang, “A prognostic model based on DBN and diffusion process for degrading bearing,” IEEE Trans. Ind. Electron., to be published. DOI: 10.1109/TIE.2019.2947839.
    P. C. Lopes Gerum, A. Altay, and M. Baykal-Gürsoy, “Data-driven predictive maintenance scheduling policies for railways,” Transp. Res. Pt. C-Emerg. Technol., vol. 107, pp. 137–154, Oct. 2019. doi: 10.1016/j.trc.2019.07.020
    Y. Lei, N. Li, L. Guo, N. Li, T. Yan, and J. Lin, “Machinery health prognostics: A systematic review from data acquisition to RUL prediction,” Mech. Syst. Signal Proc., vol. 104, pp. 799–834, May 2018. doi: 10.1016/j.ymssp.2017.11.016
    K. T. Nguyen and K. Medjaher, “A new dynamic predictive maintenance framework using deep learning for failure prognostics,” Reliab. Eng. Syst. Saf., vol. 188, pp. 251–262, Aug. 2019. doi: 10.1016/j.ress.2019.03.018
    K. Wang, “Intelligent predictive maintenance (IPdM) system–Industry 4.0 scenario,” WIT Trans. Eng. Sci., vol. 113, pp. 259–268, 2016.
    F. Civerchia, S. Bocchino, C. Salvadori, E. Rossi, L. Maggiani, and M. Petracca, “Industrial Internet of Things monitoring solution for advanced predictive maintenance applications,” J. Ind. Inf. Integr., vol. 7, pp. 4–12, Sept. 2017.
    J. Wang, L. Zhang, L. Duan, and R. X. Gao, “A new paradigm of cloudbased predictive maintenance for intelligent manufacturing,” J. Intell. Manuf., vol. 28, no. 5, pp. 1125–1137, Jun. 2017. doi: 10.1007/s10845-015-1066-0
    M. Baptista, S. Sankararaman, I. P. de Medeiros, C. Nascimento Jr, H. Prendinger, and E. M. Henriques, “Forecasting fault events for predictive maintenance using data-driven techniques and ARMA modeling,” Comput. Ind. Eng., vol. 115, pp. 41–53, Jan. 2018. doi: 10.1016/j.cie.2017.10.033
    B. O. Gombé, G. G. Mérou, K. Breschi, H. Guyennet, J. M. Friedt, V. Felea, and K. Medjaher, “A SAW wireless sensor network platform for industrial predictive maintenance,” J. Intell. Manuf., vol. 30, no. 4, pp. 1617–1628, Apr. 2019. doi: 10.1007/s10845-017-1344-0
    K. A. Nguyen, P. Do, and A. Grall, “Joint predictive maintenance and inventory strategy for multi-component systems using Birnbaum’s structural importance,” Reliab. Eng. Syst. Saf., vol. 168, pp. 249–261, Dec. 2017. doi: 10.1016/j.ress.2017.05.034
    S. Khan and T. Yairi, “A review on the application of deep learning in system health management,” Mech. Syst. Signal Proc., vol. 107, pp. 241–265, Jul. 2018. doi: 10.1016/j.ymssp.2017.11.024
    C. Zhang, C. Wang, N. Lu, and B. Jiang, “An RBMs-BN method to RUL prediction of traction converter of CRH2 trains,” Eng. Appl. Artif. Intell., vol. 85, pp. 46–56, Oct. 2019. doi: 10.1016/j.engappai.2019.06.001
    K. T. Huynh, I. T. Castro, A. Barros, and C. Berenguer, “On the use of mean residual life as a condition index for condition-based maintenance decision-making,” IEEE Trans. Syst. Man Cybern. -Syst., vol. 44, no. 7, pp. 877–893, Jul. 2014. doi: 10.1109/TSMC.2013.2290772
    R. Khelif, B. Chebel-Morello, S. Malinowski, E. Laajili, F. Fnaiech, and N. Zerhouni, “Direct remaining useful life estimation based on support vector regression,” IEEE Trans. Ind. Electron., vol. 64, no. 3, pp. 2276–2285, Mar. 2016.
    C. Wang, N. Lu, Y. Cheng, and B. Jiang, “A data-driven aero-engine degradation prognostic strategy,” IEEE T. Cybern., to be published. DOI: 10.1109/TCYB.2019.2938244.
    E. Ramasso, M. Rombaut, and N. Zerhouni, “Joint prediction of continuous and discrete states in time-series based on belief functions,” IEEE T. Cybern., vol. 43, no. 1, pp. 37–50, Feb. 2013. doi: 10.1109/TSMCB.2012.2198882
    Q. Miao, L. Xie, H. Cui, W. Liang, and M. Pecht, “Remaining useful life prediction of lithium-ion battery with unscented particle filter technique,” Microelectron. Reliab., vol. 53, no. 6, pp. 805–810, Jun. 2013. doi: 10.1016/j.microrel.2012.12.004
    T. Qin, S. Zeng, and J. Guo, “Robust prognostics for state of health estimation of lithium-ion batteries based on an improved PSO–SVR model,” Microelectron. Reliab., vol. 55, no. 9–10, pp. 1280–1284, Sept. 2015. doi: 10.1016/j.microrel.2015.06.133
    A. Soualhi, K. Medjaher, and N. Zerhouni, “Bearing health monitoring based on Hilbert–Huang transform, support vector machine, and regression,” IEEE Trans. Instrum. Meas., vol. 64, no. 1, pp. 52–62, Jan. 2015. doi: 10.1109/TIM.2014.2330494
    H. Dong, X. Jin, Y. Lou, and C. Wang, “Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter,” J. Power Sources, vol. 271, pp. 114–123, Dec. 2014. doi: 10.1016/j.jpowsour.2014.07.176
    T. Wang, J. Yu, D. Siegel, and J. Lee, “A similarity-based prognostics approach for remaining useful life estimation of engineered systems,” in Proc. Int. Conf. Prognostics Health Manage., Denver, CO, USA, 2008, pp. 1–6.
    S. Malinowski, B. Chebel-Morello, and N. Zerhouni, “Remaining useful life estimation based on discriminating shapelet extraction,” Reliab. Eng. Syst. Saf., vol. 142, pp. 279–288, Oct. 2015. doi: 10.1016/j.ress.2015.05.012
    F. Xue, P. Bonissone, A. Varma, W. Yan, N. Eklund, and K. Goebel, “An instance-based method for remaining useful life estimation for aircraft engines,” J. Failure Anal. Prevention, vol. 8, no. 2, pp. 199–206, Apr. 2008. doi: 10.1007/s11668-008-9118-9
    E. Zio and F. D. Maio, “A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system,” Reliab. Eng. Syst. Saf., vol. 95, no. 1, pp. 49–57, Jan. 2010. doi: 10.1016/j.ress.2009.08.001
    Y. Wu, M. Yuan, S. Dong, L. Lin, and Y. Liu, “Remaining useful life estimation of engineered systems using vanilla LSTM neural networks,” Neurocomputing, vol. 275, pp. 167–179, Jan. 2018. doi: 10.1016/j.neucom.2017.05.063
    M. Esmaelian, H. Shahmoradi, and M. Vali, “A novel classification method: A hybrid approach based on extension of the UTADIS with polynomial and PSO-GA algorithm,” Appl. Soft. Comput., vol. 49, pp. 56–70, Dec. 2016. doi: 10.1016/j.asoc.2016.07.017
    X. Jia, M. Zhao, Y. Di, Q. Yang, and J. Lee, “Assessment of data suitability for machine prognosis using maximum mean discrepancy,” IEEE Trans. Ind. Electron., vol. 65, no. 7, pp. 5872–5881, Jul. 2018. doi: 10.1109/TIE.2017.2777383
    S. Sharifian, and M. Barati, “An ensemble multiscale wavelet-GARCH hybrid SVR algorithm for mobile cloud computing workload prediction,” Int. J. Mach. Learn. Cybern., vol. 10, no. 11, pp. 3285–3300, Nov. 2019. doi: 10.1007/s13042-019-01017-1
    C. Wang, N. Lu, S. Wang, Y. Cheng, and B. Jiang, “Dynamic long short-term memory neural-network-based indirect remaining-useful-life prognosis for satellite lithium-ion battery,” Appl. Sci.-Basel, vol. 8, no. 11, Article ID 2078, Nov. 2018. DOI: 10.3390/app8112078.
    M. Martínez-García, Y. Zhang, K. Suzuki, and Y. Zhang, “Measuring system entropy with a deep recurrent neural network model,” in Proc. IEEE 17th Int. Conf. Ind. Informat., Helsinki, Finland, 2019, pp. 1253–1256.
    M. Martínez-García, Y. Zhang, and T. Gordon, “Memory pattern identification for feedback tracking control in human–machine systems,” Hum. Factors, pp. 1–17, Oct. 2019.
    S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,” Adv. Eng. Softw., vol. 69, pp. 46–61, Mar. 2014. doi: 10.1016/j.advengsoft.2013.12.007
    H. Faris, I. Aljarah, M. A. Al-Betar, and S. Mirjalili, “Grey wolf optimizer: a review of recent variants and applications,” Neural Comput. Appl., vol. 30, no. 2, pp. 413–435, Jul. 2018. doi: 10.1007/s00521-017-3272-5
    NASA. "Prognostic Data Repository". [Online]. Available: https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/. Accessed on: Sept. 2019.
    A. Saxena, K. Goebel, D. Simon, and N. Eklund, “Damage propagation modeling for aircraft engine run-to-failure simulation,” in Proc. Int. Conf. Prognostics Health Manage., Denver, CO, USA, 2008, pp. 1–9.
    F. O. Heimes, “Recurrent neural networks for remaining useful life estimation,” in Proc. Int. Conf. Prognostics Health Manage., Denver, CO, USA, 2008, pp. 1−6.
    R. E. Precup, R. C. David, and E. M. Petriu, “Grey wolf optimizer algorithm-based tuning of fuzzy control systems with reduced parametric sensitivity,” IEEE Trans. Ind. Electron., vol. 64, no. 1, pp. 527–534, Jan. 2017. doi: 10.1109/TIE.2016.2607698


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article views (1962) PDF downloads(66) Cited by()


    • Degradation feature selection procedure helps to lessen calculative burden.
    • Hybrid model helps to enhance prediction robustness and increase marginal utility.
    • Evolutionary algorithm helps to determine hybrid model parameters.
    • Cost function with penalty mechanism allows alleviating prediction risk.
    • Cost metric allows measuring risk-averse predictive maintenance benefit.


    DownLoad:  Full-Size Img  PowerPoint