A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 8 Issue 3
Mar.  2021

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 6.171, Top 11% (SCI Q1)
    CiteScore: 11.2, Top 5% (Q1)
    Google Scholar h5-index: 51, TOP 8
Turn off MathJax
Article Contents
Andre Luiz de Oliveira, Carlos Eduardo Capovilla, Ivan Roberto Santana Casella, José Luis Azcue-Puma and Alfeu J. Sguarezi Filho, "Co-Simulation of an SRG Wind Turbine Control and GPRS/EGPRS Wireless Standards in Smart Grids," IEEE/CAA J. Autom. Sinica, vol. 8, no. 3, pp. 656-663, Mar. 2021. doi: 10.1109/JAS.2021.1003883
Citation: Andre Luiz de Oliveira, Carlos Eduardo Capovilla, Ivan Roberto Santana Casella, José Luis Azcue-Puma and Alfeu J. Sguarezi Filho, "Co-Simulation of an SRG Wind Turbine Control and GPRS/EGPRS Wireless Standards in Smart Grids," IEEE/CAA J. Autom. Sinica, vol. 8, no. 3, pp. 656-663, Mar. 2021. doi: 10.1109/JAS.2021.1003883

Co-Simulation of an SRG Wind Turbine Control and GPRS/EGPRS Wireless Standards in Smart Grids

doi: 10.1109/JAS.2021.1003883
Funds:  The work was supported by CAPES, CNPq (405757/2018-2), and INERGE, all from Brazil
More Information
  • Wind energy can be considered a push-driver factor in the integration of renewable energy sources within the concept of smart grids. For its full deployment, it requires a modern telecommunication infrastructure for transmitting control signals around the distributed generation, in which, the wireless communication standards stand out for employing modern digital modulation and coding schemes for error correction, in order to guarantee the power plant operability. In some developing countries, such as Brazil, the high penetration of commercial mobile wireless standards GPRS and EGPRS (based on GSM technology) have captivated the interests of the energy sector, and they now seek to perform remote monitoring and control operations. In this context, this article presents a comparative performance analysis of a wireless control system for a wind SRG, when a GPRS or EGPRS data service is employed. The system performance is analyzed by co-simulations, including the wind generator dynamics and the wireless channel effects. The satisfactory results endorse the viability and robustness of the proposed system.

     

  • loading
  • [1]
    M. Godoy Simões, F. Harirchi, and M. Babakmehr, “Survey on timedomain power theories and their applications for renewable energy integration in smart-grids,” IET Smart Grid, vol. 2, no. 4, pp. 491–503, 2019. doi: 10.1049/iet-stg.2018.0244
    [2]
    N. Javaid, G. Hafeez, S. Iqbal, N. Alrajeh, M. S. Alabed, and M. Guizani, “Energy efficient integration of renewable energy sources in the smart grid for demand side management,” IEEE Access, vol. 6, pp. 77 077–77 096, 2018. doi: 10.1109/ACCESS.2018.2866461
    [3]
    M. M. Eissa, “Challenges and novel solution for wide-area protection due to renewable sources integration into smart grid: an extensive review,” IET Renewable Power Generation, vol. 12, no. 16, pp. 1843–1853, 2018. doi: 10.1049/iet-rpg.2018.5175
    [4]
    K. Sarker, D. Chatterjee, and S. K. Goswami, “Grid integration of photovoltaic and wind based hybrid distributed generation system with low harmonic injection and power quality improvement using biogeographybased optimization,” Renewable Energy Focus, vol. 22, no. 12, pp. 38–56, Dec. 2017.
    [5]
    S. K. Rathor and D. Saxena, “Energy management system for smart grid: An overview and key issues,” Int. J. Energy Research, vol. 44, no. 6, pp. 4067–4109, 2020. doi: 10.1002/er.4883
    [6]
    D. Han and Z. Yan, “Evaluating the impact of smart grid technologies on generation expansion planning under uncertainties,” Int. Trans. Electrical Energy Systems, vol. 26, no. 5, pp. 934–951, Jul. 2015.
    [7]
    M. Ghorbanian, S. H. Dolatabadi, M. Masjedi, and P. Siano, “Communication in smart grids: A comprehensive review on the existing and future communication and information infrastructures,” IEEE Systems J., vol. 13, no. 4, pp. 4001–4014, 2019. doi: 10.1109/JSYST.2019.2928090
    [8]
    R. N. Gore and S. P. Valsan, “Wireless communication technologies for smart grid (WAMS) deployment,” in Proc. IEEE Int. Conf. Industrial Technology, pp. 1326–1331, 2018.
    [9]
    C. E. Capovilla, I. R. S. Casella, F. F. Costa, L. A. Luz-de-Almeida, and A. J. Sguarezi Filho, “DFIG-based wind turbine predictive control employing a median filter to mitigate impulsive interferences on transmitted wireless references,” IEEE Trans. Industry Applications, vol. 55, no. 4, pp. 4091–4099, 2019. doi: 10.1109/TIA.2019.2903175
    [10]
    T. A. Zerihun, M. Garau, and B. E. Helvik, “Effect of communication failures on state estimation of 5G-enabled smart grid,” IEEE Access, vol. 8, pp. 112642–112658, 2020. doi: 10.1109/ACCESS.2020.3002981
    [11]
    Y. Ding, X. Li, Y. Tian, G. Ledwich, Y. Mishra, and C. Zhou, “Generating scale-free topology for wireless neighborhood area networks in smart grid,” IEEE Trans. Smart Grid, vol. 10, no. 4, pp. 4245–4252, 2019. doi: 10.1109/TSG.2018.2854645
    [12]
    L. Nan, W. Yang, and L. ShanShan, “Centralized automatic meter reading system based on GPRS technology,” in Proc. 6th Int. Conf. Instrumentation Measurement, Computer, Communication and Control, pp. 549–553, 2016.
    [13]
    D. M. Nouh, B. Abdelaziz, E. Faissal, L. Anass, C. Nazha, and B. Jamal, “A M2M communication based on GPRS and IEC61850 for smart substations remote control,” in Proc. Int. Conf. Electrical and Information Technologies, pp. 1–5, 2017.
    [14]
    F. O. S. Gama, L. F. Q. Silveira, and A. O. Salazar, “Adaptive wavelet coding applied in a wireless control system,” Sensors, vol. 17, no. 12, pp. 1–14, Jul. 2015.
    [15]
    M. Gheisarnejad, P. Karimaghaee, J. Boudjadar, and M. Khooban, “Realtime cellular wireless sensor testbed for frequency regulation in smart grids,” IEEE Sensors J., vol. 19, no. 23, pp. 11656–11665, 2019. doi: 10.1109/JSEN.2019.2934599
    [16]
    M. A. Ahmed, A. M. Eltamaly, M. A. Alotaibi, A. I. Alolah, and Y. Kim, “Wireless network architecture for cyber physical wind energy system,” IEEE Access, vol. 8, pp. 40180–40197, 2020. doi: 10.1109/ACCESS.2020.2976742
    [17]
    C. Bajracharya, R. Grodi, and D. B. Rawat, “Performance analysis of wireless sensor networks for wind turbine monitoring systems,” SoutheastCon 2015, pp. 1–4, 2015.
    [18]
    ETSI, “Ts45003 v 12.1.0 release 12 – Digital cellular telecommunications system,” European Telecommunications Standards Institute, Tech. Rep., 2014.
    [19]
    L. Zhao, I. Brandao Machado Matsuo, Y. Zhou, and W. Lee, “Design of an industrial IoT-based monitoring system for power substations,” IEEE Trans. Industry Applications, vol. 55, no. 6, pp. 5666–5674, 2019. doi: 10.1109/TIA.2019.2940668
    [20]
    C. M. R. Osorio, J. Solis-Chaves, I. R. S. Casella, C. E. Capovilla, J. L. A. Puma, and A. J. Sguarezi Filho, “GPRS/EGPRS standards applied to DTC of a DFIG using fuzzy – PI controllers,” Int. J. Electrical Power &Energy Systems, vol. 93, pp. 365–373, 2017.
    [21]
    J. S. Solís-Chaves, L. L. Rodrigues, C. M. Rocha-Osorio, and A. J. S. Filho, “A long-range generalized predictive control algorithm for a DFIG based wind energy system,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 5, pp. 1209–1219, 2019. doi: 10.1109/JAS.2019.1911699
    [22]
    M. J. Morshed and A. Fekih, “A sliding mode approach to enhance the power quality of wind turbines under unbalanced voltage conditions,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 2, pp. 566–574, 2019. doi: 10.1109/JAS.2019.1911414
    [23]
    M. S. Mahmoud and M. O. Oyedeji, “Adaptive and predictive control strategies for wind turbine systems: A survey,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 2, pp. 364–378, 2019. doi: 10.1109/JAS.2019.1911375
    [24]
    Y.-C. Chang and C.-M. Liaw, “Establishment of a switched reluctance generator-based common DC microgrid system,” IEEE Trans. Power Electron., pp. 2512–2526, Sept. 2011.
    [25]
    Y. Hu, X. Song, W. Cao, and B. Ji, “New SR drive with integrated charging capacity for plug-in hybrid electric vehicles (PHEVs),” IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5722–5731, Oct. 2014. doi: 10.1109/TIE.2014.2304699
    [26]
    F. L. M. dos Santos, J. Anthonis, F. Naclerio, J. J. C.Gyselinck, H. V. der Auweraer, and L. C. S. Goes, “Multiphysics NVH modeling: Simulation of a switched reluctance motor for an electric vehicle,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 469–476, Jan. 2014. doi: 10.1109/TIE.2013.2247012
    [27]
    D. Yu, Y. Hua, S. Yu, P. Zhang, H. H. C. Iu, and T. Fernando, “A new modulation-demodulation approach to DC power-line data transmission for SRG-integrated microgrid,” IEEE Trans. Power Electronics, vol. 35, no. 11, pp. 12 370–12 382, 2020. doi: 10.1109/TPEL.2020.2984911
    [28]
    S. Mendez, A. Martinez, W. Millan, C. E. Montano, and F. PerezCebolla, “Design, characterization, and validation of a 1-kW AC selfexcited switched reluctance generator,” IEEE Trans. Ind. Electron., vol. 61, no. 2, pp. 846–855, Feb. 2014. doi: 10.1109/TIE.2013.2254098
    [29]
    S. F. Azongha, S. Balathandayuthapani, C. S. Edrington, and J. P. Leonard, “Grid integration studies of a switched reluctance generator for future hardware-in-the-loop experiments,” IEEE Int. Conf. Ind. Tech., pp. 3079–3084, Jun. 2010.
    [30]
    J. G. Cardoso, I. R. S. Casella, C. E. Capovilla, and A. J. Sguarezi Filho, “Comparison of wireless power controllers for induction aerogenerators connected to a smart grid based on GPRS and EGPRS standards,” J. Control,Automation and Electrical Systems, vol. 27, pp. 328–338, Jun. 2016. doi: 10.1007/s40313-016-0238-2
    [31]
    C. E. Capovilla, I. R. S. Casella, A. J. Sguarezi Filho, T. A. Barros, and E. Ruppert, “Performance of a direct power control system using coded wireless OFDM power reference transmissions for switched reluctance aerogenerators in a smart grid scenario,” IEEE Trans. Ind. Electron., vol. 62, no. 1, pp. 52–61, Jan. 2015. doi: 10.1109/TIE.2014.2331017
    [32]
    I. R. S. Casella, C. E. Capovilla, A. J. Sguarezi Filho, R. V. Jacomini, J. L. Azcue-Puma, and E. Ruppert, “An ANFIS power control for wind energy generation in smart grid scenario using wireless coded OFDM-16-QAM,” J. Control,Automation and Electrical Systems, vol. 25, pp. 22–31, 2014. doi: 10.1007/s40313-013-0089-z
    [33]
    R. Krishnan, Switched Reluctance Motor Drives, Modeling, Simulation, Analysis, Design and Applications. CRC Press, 2001.
    [34]
    K. Ogawa, N. Yamamura, and M. Ishda, “Study for small size wind power generating system using switched reluctance generator,” IEEE Int. Conf. Ind. Tech., pp. 1510–1515, 2006.
    [35]
    K. Kiyota, T. Kakishima, and A. Chiba, “Comparison of test result and design stage prediction of switched reluctance motor competitive with 60-kw rare-earth PM motor,” IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5712–5721, Oct. 2014. doi: 10.1109/TIE.2014.2304705
    [36]
    A. Altomare, A. Guagnano, F. Cupertino, and D. Naso, “Discrete-time control of high-speed salient machines,” IEEE Trans. Industry Applications, vol. 52, no. 1, pp. 293–301, Jan. 2016. doi: 10.1109/TIA.2015.2478750
    [37]
    X. Li and P. Shamsi, “Inductance surface learning for model predictive current control of switched reluctance motors,” IEEE Trans. Transportation Electrification, vol. 1, no. 3, pp. 287–297, Oct. 2015. doi: 10.1109/TTE.2015.2468178
    [38]
    M. Karimi-Ghartema, Synchronous Reference Frame PLL in Enhanced Phase-Locked Loop Structures for Power and Energy Applications. Wiley-IEEE Press, 2014.
    [39]
    G. Abad, J. Lopez, M. Rodriguez, L. Marroyo, and G. Iwanski, Doubly Fed Induction Machine: Modeling and Control for Wind Energy Generation, 1st ed. Wiley-IEEE Press, 2011.
    [40]
    H. Buddendick, A. Weber, and M. Tangemann, “Comparison of data throughput performance in GPRS, EGPRS, and UMTS,” in Proc. World Wireless Congr., 2003, pp. 1–6.
    [41]
    J. S. Lee and L. E. Miller, CDMA Systems Engineering Handbook, 1st ed. Artech House, 1998.
    [42]
    O. Gazi, Forward Error Corr. via Channel Coding. Springer, 2020.
    [43]
    O. M. Kamel, A. A. Z. Diab, T. D. Do, and M. A. Mossa, “A novel hybrid ant colony-particle swarm optimization techniques based tuning STATCOM for grid code compliance,” IEEE Access, vol. 8, pp. 41566–41587, 2020. doi: 10.1109/ACCESS.2020.2976828

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (728) PDF downloads(24) Cited by()

    Highlights

    • Co-simulation of wind turbine and telecommunication is proposed;
    • The wireless transmitted signals control an SRG;
    • GPRS and EGPRS wireless standards are used/analyzed;
    • The EGPRS operating mode has shown the best performance for Smart Grids.

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return