A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 8 Issue 4
Apr.  2021

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Jun Ye, Spandan Roy, Milinko Godjevac, Vasso Reppa, and Simone Baldi, "Robustifying Dynamic Positioning of Crane Vessels for Heavy Lifting Operation," IEEE/CAA J. Autom. Sinica, vol. 8, no. 4, pp. 753-765, Apr. 2021. doi: 10.1109/JAS.2021.1003913
Citation: Jun Ye, Spandan Roy, Milinko Godjevac, Vasso Reppa, and Simone Baldi, "Robustifying Dynamic Positioning of Crane Vessels for Heavy Lifting Operation," IEEE/CAA J. Autom. Sinica, vol. 8, no. 4, pp. 753-765, Apr. 2021. doi: 10.1109/JAS.2021.1003913

Robustifying Dynamic Positioning of Crane Vessels for Heavy Lifting Operation

doi: 10.1109/JAS.2021.1003913
Funds:  This work was supported by the Program of China Scholarship Council (CSC) (20167720003), the Special Guiding Funds Double First-Class (3307012001A), and the Natural Science Foundation of China (62073074)
More Information
  • Construction crane vessels make use of dynamic positioning (DP) systems during the installation and removal of offshore structures to maintain the vessel’s position. Studies have reported cases of instability of DP systems during offshore operation caused by uncertainties, such as mooring forces. DP “robustification” for heavy lift operations, i.e., handling such uncertainties systematically and with stability guarantees, is a long-standing challenge in DP design. A new DP method, composed by an observer and a controller, is proposed to address this challenge, with stability guarantees in the presence of uncertainties. We test the proposed method on an integrated cranevessel simulation environment, where the integration of several subsystems (winch dynamics, crane forces, thruster dynamics, fuel injection system etc.) allow a realistic validation under a wide set of uncertainties.

     

  • loading
  • [1]
    A. Grovlen and T. I. Fossen, “Nonlinear control of dynamic positioned ships using only position feedback: An observer backstepping approach,” in Proc. 35th IEEE Conf. Decision and Control, Kobe, Japan, 1996, pp. 3388−3393.
    [2]
    J. M. Godhavn, T. I. Fossen, and S. P. Berge, “Non-linear and adaptive backstepping designs for tracking control of ships,” Int. J Adapt. Control Signal Process., vol. 12, no. 8, pp. 649–670, Dec. 1998. doi: 10.1002/(SICI)1099-1115(199812)12:8<649::AID-ACS515>3.0.CO;2-P
    [3]
    T. I. Fossen and A. Grovlen, “Nonlinear output feedback control of dynamically positioned ships using vectorial observer backstepping,” IEEE Trans. Control Syst. Technol., vol. 6, no. 1, pp. 121–128, Jan. 1998. doi: 10.1109/87.654882
    [4]
    X. M. Sun and S. S. Ge, “Adaptive neural region tracking control of multi-fully actuated ocean surface vessels,” IEEE/CAA J. Autom. Sinica, vol. 1, no. 1, pp. 77–83, Jan. 2014. doi: 10.1109/JAS.2014.7004623
    [5]
    I. B. Utne, B. Rokseth, A. J. Sørensen, and J. E. Vinnem, “Towards supervisory risk control of autonomous ships,” Reliab. Eng. Syst. Saf., vol. 196, Article No. 106757, Apr. 2020. doi: 10.1016/j.ress.2019.106757
    [6]
    R. H. Rogne, T. H. Bryne, T. I. Fossen, and T. A. Johansen, “On the usage of low-cost mems sensors, strapdown inertial navigation, and nonlinear estimation techniques in dynamic positioning,” IEEE J. Ocean. Eng., 2020. DOI: 10.1109/JOE.2020.2967094.
    [7]
    Y. C. Cao and T. S. Li, “Review of antiswing control of shipboard cranes,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 346–354, Mar. 2020. doi: 10.1109/JAS.2020.1003024
    [8]
    J. Flint and R. Stephens, “Dynamic positioning for heavy lift applications,” in Proc. Annu. Conf. Dynamic Positioning Conf., Houston, Texas, USA, 2008, pp. 200−233.
    [9]
    J. Ye, M. Godjevac, and E. el Amam, “Position control of crane vessel during offshore installations: Using adaptive and robust control methods,” in Proc. 21st Int. Conf. System Theory, Control and Computing, Sinaia, Romania, 2017, pp. 17−22.
    [10]
    S. Messineo and A. Serrani, “Offshore crane control based on adaptive external models,” Automatica, vol. 45, no. 11, pp. 2546–2556, Nov. 2009. doi: 10.1016/j.automatica.2009.07.032
    [11]
    B. V. E. How, S. S. Ge, and Y. S. Choo, “Dynamic load positioning for subsea installation via adaptive neural control,” IEEE J. Ocean. Eng., vol. 35, no. 2, pp. 366–375, Apr. 2010. doi: 10.1109/JOE.2010.2041261
    [12]
    J. F. Yu, Q. S. Li, and W. J. Zhou, “Nonlinear robust stabilization of ship roll by convex optimization,” IEEE/CAA J. Autom. Sinica, Article No. 2016. DOI: 10.1109/JAS.2016.7510163
    [13]
    J. L. Du, Y. Yang, D. H. Wang, and C. Guo, “A robust adaptive neural networks controller for maritime dynamic positioning system,” Neurocomputing, vol. 110, pp. 128–136, Jun. 2013. doi: 10.1016/j.neucom.2012.11.027
    [14]
    J. L. Du, X. Hu, M. Krstić, and Y. Q. Sun, “Dynamic positioning of ships with unknown parameters and disturbances,” Control Eng. Pract., vol. 76, pp. 22–30, Jul. 2018. doi: 10.1016/j.conengprac.2018.03.015
    [15]
    X. Hu and J. L. Du, “Robust nonlinear control design for dynamic positioning of marine vessels with thruster system dynamics,” Nonlinear Dyn., vol. 94, pp. 365–376, Oct. 2018. doi: 10.1007/s11071-018-4364-1
    [16]
    Y. H. Wang, Y. L. Tuo, S. X. Yang, M. Biglarbegian, and M. Y. Fu, “Reliability-based robust dynamic positioning for a turret-moored floating production storage and offloading vessel with unknown time-varying disturbances and input saturation,” ISA Trans., vol. 78, pp. 66–79, Jul. 2018. doi: 10.1016/j.isatra.2017.12.023
    [17]
    Z. J. Sun, G. Q. Zhang, L. Qiao, and W. D. Zhang, “Robust adaptive trajectory tracking control of underactuated surface vessel in fields of marine practice,” J. Mar. Sci. Technol., vol. 23, no. 4, pp. 950–957, Dec. 2018. doi: 10.1007/s00773-017-0524-0
    [18]
    W. Z. Yu, H. X. Xu, and H. Feng, “Robust adaptive fault-tolerant control of dynamic positioning vessel with position reference system faults using backstepping design,” Int. J. Robust Nonlinear Control, vol. 28, no. 2, pp. 403–415, Jan. 2018. doi: 10.1002/rnc.3873
    [19]
    A. H. Brodtkorb, S. A. Værnø, A. R. Teel, A. J. Sørensen, and R. Skjetne, “Hybrid controller concept for dynamic positioning of marine vessels with experimental results,” Automatica, vol. 93, pp. 489–497, Jul. 2018. doi: 10.1016/j.automatica.2018.03.047
    [20]
    K. D. Do, “Global robust and adaptive output feedback dynamic positioning of surface ships,” in Proc. IEEE Int. Conf. Robotics and Automation, Roma, Italy, 2007, pp. 4271−4276.
    [21]
    M. Y. Fu, L. L. Yu, M. Y. Li, Y. L. Tuo, and C. L. Ni, “Synchronization control of multiple surface vessels without velocity measurements,” in Proc. IEEE Int. Conf. Mechatronics and Automation, Beijing, China, 2015, pp. 643−648.
    [22]
    Z. H. Peng, L. Liu, and J. Wang, “Output-feedback flocking control of multiple autonomous surface vehicles based on data-driven adaptive extended state observers,” IEEE Trans. Cybern., 2020. DOI: 10.1109/TCYB.2020.3009992.
    [23]
    F. C. Bakker, “A conceptual solution to instable dynamic positioning during offshore heavy lift operations using computer simulation techniques,” M.S. thesis, Delft University of Technology, The Netherlands, 2015.
    [24]
    Y. G. Sun, H. Y. Qiang, J. Q. Xu, and D. S. Dong, “The nonlinear dynamics and anti-sway tracking control for offshore container crane on a mobile harbor,” J. Mar. Sci. Technol., vol. 25, no. 6, pp. 656–665, Nov. 2017.
    [25]
    T. I. Fossen and T. Perez, “Marine systems simulator (MSS),” https://github.com/cybergalactic/MSS, accessed 2004.
    [26]
    J. Ye, S. Roy, M. Godjevac, and S. Baldi, “Observer-based robust control for dynamic positioning of large-scale heavy lift vessels,” IFAC-PapersOnLine, vol. 52, no. 3, pp. 138–143, Jan. 2019. doi: 10.1016/j.ifacol.2019.06.024
    [27]
    P. A. Ioannou and J. Sun, Robust Adaptive Control. Upper Saddle River, NJ: Prentice-Hall, 1996.
    [28]
    A. J. Sørensen, “Structural issues in the design and operation of marine control systems,” Annu. Rev. Control, vol. 29, no. 1, pp. 125–149, Dec. 2005. doi: 10.1016/j.arcontrol.2004.12.001
    [29]
    T. I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Control. United Kingdom: John Wiley & Sons, 2011.
    [30]
    J. Ye, M. Godjevac, S. Baldi, and H. Hopman, “Joint estimation of vessel position and mooring stiffness during offshore crane operations,” Autom. Construct., vol. 101, pp. 218–226, May 2019. doi: 10.1016/j.autcon.2019.01.011
    [31]
    E. F. Brater and H. W. King, Handbook of Hydraulics for the Solution of Hydraulic Engineering Problems. New York: McGraw-Hill, 1976.
    [32]
    G. C. Goodwin, S. F. Graebe, and M. E. Salgado, Control System Design. Upper Saddle River, NJ: Prentice Hall, 2001.
    [33]
    M. Godjevac and M. Drijver, “Performance evaluation of an inland pusher,” in Transport of Water versus Transport over Water, C. Ocampo-Martinez and R. Negenborn, Eds. Switzerland: Springer, 2015, pp. 389−411.
    [34]
    R. D. Geertsma, R. R. Negenborn, K. Visser, M. A. Loonstijn, and J. J. Hopman, “Pitch control for ships with diesel mechanical and hybrid propulsion: Modelling, validation and performance quantification,” Appl. Energy, vol. 206, pp. 1609–1631, Nov. 2017. doi: 10.1016/j.apenergy.2017.09.103
    [35]
    S. Roy, J. Lee, and S. Baldi, “A new adaptive-robust design for time delay control under state-dependent stability condition,” IEEE Trans. Control Syst. Technol., vol. 29, no. 1, pp. 420–427, Jan. 2021. doi: 10.1109/TCST.2020.2969129
    [36]
    T. I. Fossen and J. P. Strand, “Passive nonlinear observer design for ships using Lyapunov methods: Full-scale experiments with a supply vessel,” Automatica, vol. 35, no. 1, pp. 3–16, Jan. 1999. doi: 10.1016/S0005-1098(98)00121-6
    [37]
    S. Ogutcu, “Assessing the contribution of galileo to GPS+GLONASS PPP: Towards full operational capability,” Measurement, vol. 151, Article No. 107143, Feb. 2020. doi: 10.1016/j.measurement.2019.107143
    [38]
    J. E. Bremnes, A. H. Brodtkorb, and A. J. Sørensen, “Sensor-based hybrid translational observer for underwater navigation,” IFAC-PapersOnLine, vol. 52, no. 21, pp. 378–383, Jan. 2019. doi: 10.1016/j.ifacol.2019.12.336
    [39]
    H. K. Khalil, Nonlinear Systems. 3rd ed. Upper Saddle River, NJ: Prentice Hall, 2002.
    [40]
    T. Tao, S. Roy, and S. Baldi, “The issue of transients in leakage-based model reference adaptive control of switched linear systems,” Nonlinear Anal.:Hybrid Syst., vol. 36, Article No. 100885, May 2020. doi: 10.1016/j.nahs.2020.100885
    [41]
    S. Roy, I. N. Kar, J. Lee, N. G. Tsagarakis, and D. G. Caldwell, “Adaptive-robust control of a class of EL systems with parametric variations using artificially delayed input and position feedback,” IEEE Trans. Control Syst. Technol., vol. 27, no. 2, pp. 603–615, Mar. 2019. doi: 10.1109/TCST.2017.2772210

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(7)

    Article Metrics

    Article views (1469) PDF downloads(49) Cited by()

    Highlights

    • We solve the challenge of “robustification” of dynamic positioning (DP) for heavy lift operations
    • A new observer + controller DP method is given with stability guarantees
    • An integrated crane-vessel simulation environment is used for a realistic validation

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return