IEEE/CAA Journal of Automatica Sinica
Citation:  Shuyi Xiao, Jiuxiang Dong, "Distributed FaultTolerant Containment Control for Nonlinear MultiAgent Systems Under Directed Network Topology via Hierarchical Approach," IEEE/CAA J. Autom. Sinica, vol. 8, no. 4, pp. 806816, Apr. 2021. doi: 10.1109/JAS.2021.1003928 
[1] 
Y. Hong, J. Hu, and L. Gao, “Tracking control for multiagent consensus with an active leader and variable topology,” Automatica, vol. 42, no. 7, pp. 1177–1182, Jul. 2006. doi: 10.1016/j.automatica.2006.02.013

[2] 
Q. Ma, J. Qin, W. X. Zheng, Y. Shi, and Y. Kang, “Exponential consensus of linear systems over switching network: A subspace method to establish necessity and sufficiency,” IEEE Trans. Cybern., to be published, DOI: 10.1109/TCYB.2020.2991540.

[3] 
Z. Li, G. Wen, Z. Duan, and W. Ren, “Designing fully distributed consensus protocols for linear multiagent systems with directed graphs,” IEEE Trans. Autom. Control, vol. 60, no. 4, pp. 1152–1157, Apr. 2015. doi: 10.1109/TAC.2014.2350391

[4] 
Y. Lv, Z. Li, Z. Duan, and J. Chen, “Distributed adaptive output feedback consensus protocols for linear systems on directed graphs with a leader of bounded input,” Automatica, vol. 74, pp. 308–314, Dec. 2016. doi: 10.1016/j.automatica.2016.07.041

[5] 
Y. Lv, Z. Li, Z. Duan, and G. Feng, “Novel distributed robust adaptive consensus protocols for linear multiagent systems with directed graphs and external disturbances,” Int. J. Control, vol. 90, no. 2, pp. 137–147, 2017. doi: 10.1080/00207179.2016.1172259

[6] 
S. Zuo, F. L. Lewis, and A. Davoudi, “Resilient output containment of heterogeneous cooperative and adversarial multigroup systems,” IEEE Trans. Autom. Control, vol. 65, no. 7, pp. 3104–3111, Jul. 2020.

[7] 
C. Chen, F. L. Lewis, S. Xie, H. Modares, Z. Liu, S. Zuo, and A. Davoudi, “Resilient adaptive and H_{∞} controls of multiagent systems under sensor and actuator faults,” Automatica, vol. 102, no. 102, pp. 19–26, Apr. 2019.

[8] 
C. Deng and G. H. Yang, “Distributed adaptive faulttolerant control approach to cooperative output regulation for linear multiagent systems,” Automatica, vol. 103, pp. 62–68, May 2019. doi: 10.1016/j.automatica.2019.01.013

[9] 
J. Mei, W. Ren, and G. Ma, “Distributed containment control for lagrangian networks with parametric uncertainties under a directed graph,” Automatica, vol. 48, no. 4, pp. 653–659, Apr. 2012. doi: 10.1016/j.automatica.2012.01.020

[10] 
X. Wang, S. Li, and P. Shi, “Distributed finitetime containment control for doubleintegrator multiagent systems,” IEEE Trans. Cybern., vol. 44, no. 9, pp. 1518–1528, Sep. 2014. doi: 10.1109/TCYB.2013.2288980

[11] 
Z. Li, W. Ren, X. Liu, and M. Fu, “Distributed containment control of multiagent systems with general linear dynamics in the presence of multiple leaders,” Int. J. Robust Nonlinear Control, vol. 23, no. 5, pp. 534–547, 2013. doi: 10.1002/rnc.1847

[12] 
Z. Li, Z. Duan, W. Ren, and G. Feng, “Containment control of linear multiagent systems with multiple leaders of bounded inputs using distributed continuous controllers,” Int. J. Robust Nonlinear Control, vol. 25, no. 13, pp. 2101–2121, 2015. doi: 10.1002/rnc.3195

[13] 
G. Wen, Y. Zhao, Z. Duan, W. Yu, and G. Chen, “Containment of higherorder multileader multiagent systems: A dynamic output approach,” IEEE Trans. Autom. Control, vol. 61, no. 4, pp. 1135–1140, Apr. 2016. doi: 10.1109/TAC.2015.2465071

[14] 
Z. Peng, D. Wang, Y. Shi, H. Wang, and W. Wang, “Containment control of networked autonomous underwater vehicles with model uncertainty and ocean disturbances guided by multiple leaders,” Inform. Sci., vol. 316, pp. 163–179, Sep. 2015. doi: 10.1016/j.ins.2015.04.025

[15] 
D. Wang, N. Zhang, J. Wang, and W. Wang, “Cooperative containment control of multiagent systems based on follower observers with time delay,” IEEE Trans. Syst. Man Cybern. Syst., vol. 47, no. 1, pp. 13–23, Jan. 2017.

[16] 
J. Chen, Z. H. Guan, C. Yang, T. Li, D. X. He, and X. H. Zhang, “Distributed containment control of fractionalorder uncertain multiagent systems,” J. Franklin Inst., vol. 353, no. 7, pp. 1672–1688, May 2016. doi: 10.1016/j.jfranklin.2016.02.002

[17] 
Y. Li, C. Hua, S. Wu, and X. Guan, “Output feedback distributed containment control for highorder nonlinear multiagent systems,” IEEE Trans. Cybern., vol. 47, no. 8, pp. 2032–2043, Aug. 2017. doi: 10.1109/TCYB.2017.2655054

[18] 
W. Wang and S. Tong, “Adaptive fuzzy containment control of nonlinear strictfeedback systems with full state constraints,” IEEE Trans. Fuzzy Syst., vol. 27, no. 10, pp. 2024–2038, Oct. 2019. doi: 10.1109/TFUZZ.2019.2893301

[19] 
Y. Wang, Y. Song, D. J. Hill, and M. Krstic, “Prescribedtime consensus and containment control of networked multiagent systems,” IEEE Trans. Cybern., vol. 49, no. 4, pp. 1138–1147, Apr. 2019. doi: 10.1109/TCYB.2017.2788874

[20] 
X. Dong, F. Meng, Z. Shi, G. Lu, and Y. Zhong, “Output containment control for swarm systems with general linear dynamics: A dynamic output feedback approach,” Syst. Control Lett., vol. 71, pp. 31–37, Sep. 2014. doi: 10.1016/j.sysconle.2014.06.007

[21] 
X. Dong, Z. Shi, G. Lu, and Y. Zhong, “Formationcontainment analysis and design for highorder linear timeinvariant swarm systems,” Int. J. Robust Nonlinear Control, vol. 25, no. 17, pp. 3439–3456, 2015. doi: 10.1002/rnc.3274

[22] 
X. Dong, Y. Hua, Y. Zhou, Z. Ren, and Y. Zhong, “Theory and experiment on formationcontainment control of multiple multirotor unmanned aerial vehicle systems,” IEEE Trans. Autom. Sci. Eng., vol. 16, no. 1, pp. 229–240, Jan. 2019. doi: 10.1109/TASE.2018.2792327

[23] 
J. Dong, Y. Wu, and G. H. Yang, “A new sensor fault isolation method for TS fuzzy systems,” IEEE Trans. Cybern., vol. 47, no. 9, pp. 2437–2447, Jun. 2017. doi: 10.1109/TCYB.2017.2707422

[24] 
H. Wang, W. Bai, and P. X. Liu, “Finitetime adaptive faulttolerant control for nonlinear systems with multiple faults,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 6, pp. 1417–1427, Nov. 2019. doi: 10.1109/JAS.2019.1911765

[25] 
X. Xie, D. Yue, H. Zhang, and Y. Xue, “Fault estimation observer design for discretetime takagisugeno fuzzy systems based on homogenous polynomially parameterdependent lyapunov functions,” IEEE Trans. Cybern., vol. 47, no. 9, pp. 2504–2513, Sep. 2017. doi: 10.1109/TCYB.2017.2693323

[26] 
J. Dong and G. H. Yang, “Reliable state feedback control of TS fuzzy systems with sensor faults,” IEEE Trans. Fuzzy Syst., vol. 23, no. 2, pp. 421–433, Apr. 2015. doi: 10.1109/TFUZZ.2014.2315298

[27] 
X. J. Li and G. H. Yang, “Robust adaptive faulttolerant control for uncertain linear systems with actuator failures,” IET Control Theory Appl., vol. 6, no. 10, pp. 1544–1551, Jul. 2012. doi: 10.1049/ietcta.2011.0599

[28] 
S. Xiao and J. Dong, “Robust adaptive faulttolerant tracking control for uncertain linear systems with timevarying performance bounds,” Int. J. Robust Nonlinear Control, vol. 29, no. 4, pp. 849–866, 2019. doi: 10.1002/rnc.4404

[29] 
L. B. Wu and J. H. Park, “Adaptive faulttolerant control of uncertain switched nonaffine nonlinear systems with actuator faults and time delays,” IEEE Trans. Syst. Man Cybern. Syst., vol. 50, no. 9, pp. 3470–3480, Sep. 2020.

[30] 
M. Liu, D. W. Ho, and P. Shi, “Adaptive faulttolerant compensation control for markovian jump systems with mismatched external disturbance,” Automatica, vol. 58, pp. 5–14, Aug. 2015. doi: 10.1016/j.automatica.2015.04.022

[31] 
C. Deng and G. H. Yang, “Distributed adaptive faulttolerant containment control for a class of multiagent systems with nonidentical matching nonlinear functions,” IET Control Theory Appl., vol. 10, no. 3, pp. 273–281, Jul. 2016. doi: 10.1049/ietcta.2015.0638

[32] 
D. Ye, M. Chen, and K. Li, “Observerbased distributed adaptive faulttolerant containment control of multiagent systems with general linear dynamics,” ISA Trans., vol. 71, pp. 32–39, Nov. 2017. doi: 10.1016/j.isatra.2017.06.007

[33] 
J. Zhang, D. W. Ding, and C. An, “Faulttolerant containment control for linear multiagent systems: An adaptive output regulation approach,” IEEE Access, vol. 7, pp. 89306–89315, Jul. 2019. doi: 10.1109/ACCESS.2019.2926619

[34] 
W. Wang, D. Wang, and Z. Peng, “Faulttolerant containment control of uncertain nonlinear systems in strictfeedback form,” Int. J. Robust Nonlinear Control, vol. 27, no. 3, pp. 497–511, 2017. doi: 10.1002/rnc.3584

[35] 
S. J. Yoo, “A lowcomplexity design for distributed containment control of networked purefeedback systems and its application to faulttolerant control,” Int. J. Robust Nonlinear Control, vol. 27, no. 3, pp. 363–379, 2017. doi: 10.1002/rnc.3573

[36] 
Z. Qu, Cooperative Control of Dynamical Systems: Applications to Autonomous Vehicles, London, UK: SpringerVerlag, 2009.

[37] 
J. Yu, P. Shi, W. Dong, and C. Lin, “Adaptive fuzzy control of nonlinear systems with unknown dead zones based on command filtering,” IEEE Trans. Fuzzy Syst., vol. 26, no. 1, pp. 46–55, Feb. 2018. doi: 10.1109/TFUZZ.2016.2634162

[38] 
Y. Li, K. Sun, and S. Tong, “Adaptive fuzzy robust faulttolerant optimal control for nonlinear largescale systems,” IEEE Trans. Fuzzy Syst., vol. 26, no. 5, pp. 2899–2914, Oct. 2018. doi: 10.1109/TFUZZ.2017.2787128

[39] 
Y. J. Liu, M. Gong, S. Tong, C. P. Chen, and D. J. Li, “Adaptive fuzzy output feedback control for a class of nonlinear systems with full state constraints,” IEEE Trans. Fuzzy Syst., vol. 26, no. 5, pp. 2607–2617, Oct. 2018. doi: 10.1109/TFUZZ.2018.2798577

[40] 
B. Chen, X. Liu, and C. Lin, “Observer and adaptive fuzzy control design for nonlinear strictfeedback systems with unknown virtual control coefficients,” IEEE Trans. Fuzzy Syst., vol. 26, no. 3, pp. 1732–1743, Jun. 2018. doi: 10.1109/TFUZZ.2017.2750619

[41] 
L. X. Wang and J. M. Mendel, “Fuzzy basis functions, universal approximation, and orthogonal leastsquares learning,” IEEE Trans. Neural Netw., vol. 3, no. 5, pp. 807–814, Sep. 1992. doi: 10.1109/72.159070

[42] 
C. Deng and G. H. Yang, “Distributed adaptive fuzzy control for nonlinear multiagent systems under directed graphs,” IEEE Trans. Fuzzy Syst., vol. 26, no. 3, pp. 1356–1366, Jun. 2018.

[43] 
W. Gao, Y. Jiang, and M. Davari, “Datadriven cooperative output regulation of multiagent systems via robust adaptive dynamic programming,” IEEE Trans. Circuits Syst. II,Exp. Briefs, vol. 66, no. 3, pp. 447–451, Mar. 2019. doi: 10.1109/TCSII.2018.2849639

[44] 
W. Gao, Z. P. Jiang, F. L. Lewis, and Y. Wang, “Leadertoformation stability of multiagent systems: An adaptive optimal control approach,” IEEE Trans. Autom. Control, vol. 63, no. 10, pp. 3581–3587, Oct. 2018. doi: 10.1109/TAC.2018.2799526

[45] 
J. Qin, G. Zhang, W. X. Zheng, and Y. Kang, “Neural networkbased adaptive consensus control for a class of nonaffine nonlinear multiagent systems with actuator faults,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 12, pp. 3633–3644, Dec. 2019. doi: 10.1109/TNNLS.2019.2901563

[46] 
C. Y. Su and Y. Stepanenko, “Adaptive control of a class of nonlinear systems with fuzzy logic,” IEEE Trans. Fuzzy Syst., vol. 2, no. 4, pp. 285–294, Nov. 1994. doi: 10.1109/91.324808

[47] 
J. Qin, Q. Ma, X. Yu, and Y. Kang, “Output containment control for heterogeneous linear multiagent systems with fixed and switching topologies,” IEEE Trans. Cybern., vol. 49, no. 12, pp. 4117–4128, Dec. 2019. doi: 10.1109/TCYB.2018.2859159

[48] 
X. Wang and G. H. Yang, “Distributed reliable H_{∞} consensus control for a class of multiagent systems under switching networks: A topologybased average dwell time approach,” Int. J. Robust Nonlinear Control, vol. 26, no. 13, pp. 2767–2787, 2016. doi: 10.1002/rnc.3474
