A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 8 Issue 4
Apr.  2021

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 6.171, Top 11% (SCI Q1)
    CiteScore: 11.2, Top 5% (Q1)
    Google Scholar h5-index: 51, TOP 8
Turn off MathJax
Article Contents
Yuhua Song, Wei He, Xiuyu He and Zhiji Han, "Vibration Control of a High-Rise Building Structure: Theory and Experiment," IEEE/CAA J. Autom. Sinica, vol. 8, no. 4, pp. 866-875, Apr. 2021. doi: 10.1109/JAS.2021.1003937
Citation: Yuhua Song, Wei He, Xiuyu He and Zhiji Han, "Vibration Control of a High-Rise Building Structure: Theory and Experiment," IEEE/CAA J. Autom. Sinica, vol. 8, no. 4, pp. 866-875, Apr. 2021. doi: 10.1109/JAS.2021.1003937

Vibration Control of a High-Rise Building Structure: Theory and Experiment

doi: 10.1109/JAS.2021.1003937
Funds:  This work was supported in part by the National Natural Science Foundation of China (61933001, 62061160371, 62003029), Beijing Natural Science Foundation (JQ20026), and Beijing Top Discipline for Artificial Intelligent Science and Engineering, University of Science and Technology Beijing
More Information
  • In this study, an innovative solution is developed for vibration suppression of the high-rise building. The infinite dimensional system model has been presented for describing high-rise building structures which have a large inertial load with the help of the Hamilton’s principle. On the basis of this system model and with the use of the Lyapunov’s direct method, a boundary controller is proposed and the closed-loop system is uniformly bounded in the time domain. Finally, by using the Smart Structure laboratory platform which is produced by Quancer, we conduct a set of experiments and find that the designed method is resultful.

     

  • loading
  • [1]
    Y. Zhang, L. Y. Li, Y. B. Guo, and X. H. Zhang, “Bidirectional wind response control of 76-story benchmark building using active mass damper with a rotating actuator,” Struct. Control Health Monit., vol. 25, no. 10, Article No. e2216, Oct. 2018. doi: 10.1002/stc.2216
    [2]
    Y. G. Zheng, J. W. Huang, Y. H. Sun, and J. Q. Sun, “Building vibration control by active mass damper with delayed acceleration feedback: Multi-objective optimal design and experimental validation,” J. Vib. Acoust., vol. 140, no. 4, Article No. 041002, Aug. 2018. doi: 10.1115/1.4038955
    [3]
    H. J. Gao, W. Zhan, H. R. Karimi, X. B. Yang, and S. Yin, “Allocation of actuators and sensors for coupled-adjacent-building vibration attenuation,” IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5792–5801, Dec. 2013. doi: 10.1109/TIE.2012.2233699
    [4]
    R. Guclu and H. Yazici, “Vibration control of a structure with ATMD against earthquake using fuzzy logic controllers,” J. Sound Vib., vol. 318, no. 1-2, pp. 36–49, Nov. 2008. doi: 10.1016/j.jsv.2008.03.058
    [5]
    L. Y. Li, G. B. Song, and J. P. Ou, “Hybrid active mass damper (AMD) vibration suppression of nonlinear high-rise structure using fuzzy logic control algorithm under earthquake excitations,” Struct. Control Health Monit., vol. 18, no. 6, pp. 698–709, Oct. 2011. doi: 10.1002/stc.402
    [6]
    H. B. Xu, C. W. Zhang, H. Li, P. Tan, J. P. Ou, and F. L. Zhou, “Active mass driver control system for suppressing wind-induced vibration of the Canton Tower,” Smart Struct. Syst., vol. 13, no. 2, pp. 281–303, Feb. 2014. doi: 10.12989/sss.2014.13.2.281
    [7]
    L. L. Chung, Y. A. Lai, C. S. W. Yang, K. H. Lien, and L. Y. Wu, “Semi-active tuned mass dampers with phase control,” J. Sound Vib., vol. 332, no. 15, pp. 3610–3625, Jul. 2013. doi: 10.1016/j.jsv.2013.02.008
    [8]
    A. P. Wang and Y. H. Lin, “Vibration control of a tall building subjected to earthquake excitation,” J. Sound Vib., vol. 299, no. 4–5, pp. 757–773, Feb. 2007. doi: 10.1016/j.jsv.2006.07.016
    [9]
    Q. Inc., Quanser Smart Structure User Manual. 2012.
    [10]
    F. Di Meglio, F. B. Argomedo, L. Hu, and M. Krstic, “Stabilization of coupled linear heterodirectional hyperbolic PDE-ODE systems,” Automatica, vol. 87, pp. 281–289, Jan. 2018. doi: 10.1016/j.automatica.2017.09.027
    [11]
    B. Z. Guo and F. F. Jin, “Output feedback stabilization for one-dimensional wave equation subject to boundary disturbance,” IEEE Trans. Autom. Control, vol. 60, no. 3, pp. 824–830, Mar. 2015. doi: 10.1109/TAC.2014.2335374
    [12]
    Z. J. Liu, Z. J. Zhao, and C. K. Ahn, “Boundary constrained control of flexible string systems subject to disturbances,” IEEE Trans. Circuits Syst. II:Exp. Briefs, vol. 67, no. 1, pp. 112–116, Jan. 2020. doi: 10.1109/TCSII.2019.2901283
    [13]
    A. Hasan, O. M. Aamo, and M. Krstic, “Boundary observer design for hyperbolic PDE-ODE cascade systems,” Automatica, vol. 68, pp. 75–86, Jun. 2016. doi: 10.1016/j.automatica.2016.01.058
    [14]
    J. M. Wang, J. J. Liu, B. B. Ren, and J. H. Chen, “Sliding mode control to stabilization of cascaded heat PDE-ODE systems subject to boundary control matched disturbance,” Automatica, vol. 52, pp. 23–34, Feb. 2015. doi: 10.1016/j.automatica.2014.10.117
    [15]
    Z. J. Liu, J. K. Liu, and W. He, “Modeling and vibration control of a flexible aerial refueling hose with variable lengths and input constraint,” Automatica, vol. 77, pp. 302–310, Mar. 2017. doi: 10.1016/j.automatica.2016.11.002
    [16]
    Y. Liu, X. B. Chen, Y. F. Mei, and Y. L. Wu, “Observer-based boundary control for an asymmetric output-constrained flexible robotic manipulator,” Sci. China Inform. Sci., 2020, DOI: 101007/S11432-019-2893-y
    [17]
    Y. Liu, Y. Fu, W. He, and Q. Hui, “Modeling and observer-based vibration control of a flexible spacecraft with external disturbances,” IEEE Trans. Ind. Electron., vol. 66, no. 11, pp. 8648–8658, Nov. 2019. doi: 10.1109/TIE.2018.2884172
    [18]
    X. Y. He, W. He, Y. R. Liu, Y. H. Wang, G. Li, and Y. Wang, “Robust adaptive control of an offshore ocean thermal energy conversion system,” IEEE Trans. Syst. Man Cybernet.:Syst., vol. 50, no. 12, pp. 5285–5295, Dec. 2020. doi: 10.1109/TSMC.2018.2870999
    [19]
    Y. Ren, M. Chen, and J. Y. Liu, “Bilateral coordinate boundary adaptive control for a helicopter lifting system with backlash-like hysteresis,” Sci. China Inform. Sci., vol. 63, Article No. 119203, Jan. 2020. doi: 10.1007/s11432-018-9636-3
    [20]
    Z. J. Zhao, X. Y. He, Z. G. Ren, and G. L. Wen, “Output feedback stabilization for an axially moving system,” IEEE Trans. Syst. Man Cybernet.:Syst., vol. 49, no. 12, pp. 2374–2383, Dec. 2019. doi: 10.1109/TSMC.2018.2882822
    [21]
    W. He, S. S. Ge, and D. Q. Huang, “Modeling and vibration control for a nonlinear moving string with output constraint,” IEEE/ASME Trans. Mechatron., vol. 20, no. 4, pp. 1886–1897, Aug. 2015. doi: 10.1109/TMECH.2014.2358500
    [22]
    Z. H. Luo, B. Z. Guo, and O. Morgul, Stability and Stabilization of Infinite Dimensional Systems with Applications. London: Springer, 1999.
    [23]
    T. S. Fu and E. A. Johnson, “Active control for a distributed mass damper system,” J. Eng. Mechan., vol. 140, no. 2, pp. 426–429, Feb. 2014. doi: 10.1061/(ASCE)EM.1943-7889.0000650
    [24]
    Y. C. Ouyang, L. Dong, L. Xue, and C. Y. Sun, “Adaptive control based on neural networks for an uncertain 2-DOF helicopter system with input deadzone and output constraints,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 3, pp. 807–815, May 2019. doi: 10.1109/JAS.2019.1911495
    [25]
    S. Zhang, Y. T. Dong, Y. C. Ouyang, Z. Yin, and K. X. Peng, “Adaptive neural control for robotic manipulators with output constraints and uncertainties,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 11, pp. 5554–5564, Nov. 2018. doi: 10.1109/TNNLS.2018.2803827
    [26]
    Y. H. Zhang, J. Sun, H. J. Liang, and H. Y. Li, “Event-triggered adaptive tracking control for multiagent systems with unknown disturbances,” IEEE Trans. Cybernet., vol. 50, no. 3, pp. 890–901, Mar. 2020. doi: 10.1109/TCYB.2018.2869084
    [27]
    Z. J. Li, B. Huang, Z. F. Ye, M. D. Deng, and C. G. Yang, “Physical human-robot interaction of a robotic exoskeleton by admittance control,” IEEE Trans. Ind. Electron., vol. 65, no. 12, pp. 9614–9624, Dec. 2018. doi: 10.1109/TIE.2018.2821649
    [28]
    Z. J. Li, B. Huang, A. Ajoudani, C. G. Yang, C. Y. Su, and A. Bicchi, “Asymmetric bimanual control of dual-arm exoskeletons for human-cooperative manipulations,” IEEE Trans. Robot., vol. 34, no. 1, pp. 264–271, Feb. 2018. doi: 10.1109/TRO.2017.2765334
    [29]
    H. W. Lin, B. Zhao, D. R. Liu, and C. Alippi, “Data-based fault tolerant control for affine nonlinear systems through particle swarm optimized neural networks,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 954–964, Jul. 2020. doi: 10.1109/JAS.2020.1003225
    [30]
    J. Fu, R. C. Ma, and T. Y. Chai, “Adaptive finite-time stabilization of a class of uncertain nonlinear systems via logic-based switchings,” IEEE Trans. Autom. Control, vol. 62, no. 11, pp. 5998–6003, Nov. 2017. doi: 10.1109/TAC.2017.2705287
    [31]
    H. Y. Li, S. Y. Zhao, W. He, and R. Q. Lu, “Adaptive finite-time tracking control of full state constrained nonlinear systems with dead-zone,” Automatica, vol. 100, pp. 99–107, Feb. 2019. doi: 10.1016/j.automatica.2018.10.030
    [32]
    Z. J. Li, Z. T. Chen, J. Fu, and C. Y. Sun, “Direct adaptive controller for uncertain MIMO dynamic systems with time-varying delay and dead-zone inputs,” Automatica, vol. 63, pp. 287–291, Jan. 2016. doi: 10.1016/j.automatica.2015.10.036
    [33]
    H. H. Pan, X. J. Jing, W. C. Sun, and H. J. Gao, “A bioinspired dynamics-based adaptive tracking control for nonlinear suspension systems,” IEEE Trans. Control Syst. Technol., vol. 26, no. 3, pp. 903–914, May 2018. doi: 10.1109/TCST.2017.2699158
    [34]
    S. Aoues, F. L. Cardoso-Ribeiro, D. Matignon, and D. Alazard, “Modeling and control of a rotating flexible spacecraft: A port-hamiltonian approach,” IEEE Trans. Control Syst. Technol., vol. 27, no. 1, pp. 355–362, Jan. 2019. doi: 10.1109/TCST.2017.2771244
    [35]
    C. Chen, Z. Liu, Y. Zhang, and C. L. P. Chen, “Modeling and adaptive compensation of unknown multiple frequency vibrations for the stabilization and control of an active isolation system,” IEEE Trans. Control Syst. Technol., vol. 24, no. 3, pp. 900–911, May 2016. doi: 10.1109/TCST.2015.2467205
    [36]
    T. Endo, F. Matsuno, and Y. M. Jia, “Boundary cooperative control by flexible Timoshenko arms,” Automatica, vol. 81, pp. 377–389, Jul. 2017. doi: 10.1016/j.automatica.2017.04.017
    [37]
    W. He, X. Y. He, and C. Y. Sun, “Vibration control of an industrial moving strip in the presence of input deadzone,” IEEE Trans. Ind. Electron., vol. 64, no. 6, pp. 4680–4689, Jun. 2017. doi: 10.1109/TIE.2017.2674592
    [38]
    X. Y. He, W. He, J. Shi, and C. Y. Sun, “Boundary vibration control of variable length crane systems in two-dimensional space with output constraints,” IEEE/ASME Trans. Mechatron., vol. 22, no. 5, pp. 1952–1962, Oct. 2017. doi: 10.1109/TMECH.2017.2721553
    [39]
    Y. Liu, F. Guo, X. Y. He, and Q. Hui, “Boundary control for an axially moving system with input restriction based on disturbance observers,” IEEE Trans. Syst. Man Cybernet.:Syst., vol. 49, no. 11, pp. 2242–2253, Nov. 2019. doi: 10.1109/TSMC.2018.2843523
    [40]
    Y. Liu, W. K. Zhan, M. L. Xing, Y. L. Wu, R. F. Xu, and X. S. Wu, “Boundary control of a rotating and length-varying flexible robotic manipulator system,” IEEE Trans. Syst. Man Cybernet.: Syst., Jun. 2020, DOI: 10.1109/TSMS.2020.2999485
    [41]
    H. N. Wu and S. Feng, “Mixed fuzzy/boundary control design for nonlinear coupled systems of ODE and boundary-disturbed uncertain beam,” IEEE Trans. Fuzzy Syst., vol. 26, no. 6, pp. 3379–3390, Dec. 2018. doi: 10.1109/TFUZZ.2018.2826475
    [42]
    M. Krstic and A. Smyshlyaev, Boundary Control of PDEs: A Course on Backstepping Designs. Philadelphia, PA: SIAM, 2008.
    [43]
    A. Smyshlyaev, B. Z. Guo, and M. Krstic, “Arbitrary decay rate for Euler-Bernoulli beam by backstepping boundary feedback,” IEEE Trans. Autom. Control, vol. 54, no. 5, pp. 1134–1140, May 2009. doi: 10.1109/TAC.2009.2013038
    [44]
    U. H. Shah and K. S. Hong, “Active vibration control of a flexible rod moving in water: Application to nuclear refueling machines,” Automatica, vol. 93, pp. 231–243, Jul. 2018. doi: 10.1016/j.automatica.2018.03.048
    [45]
    W. He and T. T. Meng, “Adaptive control of a flexible string system with input hysteresis,” IEEE Trans. Control Syst. Technol., vol. 26, no. 2, pp. 693–700, Mar. 2018. doi: 10.1109/TCST.2017.2669158
    [46]
    X. P. Zhang, W. W. Xu, S. S. Nair, and V. Chellaboina, “PDE modeling and control of a flexible two-link manipulator,” IEEE Trans. Control Syst. Technol., vol. 13, no. 2, pp. 301–312, Mar. 2005. doi: 10.1109/TCST.2004.842446
    [47]
    S. Feng and H. N. Wu, “Hybrid robust boundary and fuzzy control for disturbance attenuation of nonlinear coupled ODE-beam systems with application to a flexible spacecraft,” IEEE Trans. Fuzzy Syst., vol. 25, no. 5, pp. 1293–1305, Oct. 2017. doi: 10.1109/TFUZZ.2016.2612264
    [48]
    S. Q. Wu, Z. H. Wang, B. Shen, J. H. Wang, and D. D. Li, “Human-computer interaction based on machine vision of a smart assembly workbench,” Assemb. Autom., vol. 40, no. 3, pp. 475–482, Jan. 2020. doi: 10.1108/AA-10-2018-0170
    [49]
    M. O. Tokhi and A. K. Azad, Flexible Robot Manipulators: Modelling, Simulation and Control. vol. 68. London: IET, 2008.
    [50]
    M. S. De Queiroz, D. M. Dawson, S. P. Nagarkatti, and F. M. Zhang, Lyapunov-Based Control of Mechanical Systems. Boston, MA: Birkhauser, 2000.
    [51]
    Q. Fu, Y. H. Yang, X. Y. Chen, and Y. L. Shang, “Vision-based obstacle avoidance for flapping-wing aerial vehicles,” Sci. China Inform. Sci., vol. 63, no. 7, Article No. 170208, Jul. 2020. doi: 10.1007/s11432-018-9582-6
    [52]
    G. Bao, Y. D. Zhang, and Z. G. Zeng, “Memory analysis for memristors and memristive recurrent neural networks,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 96–105, Jan. 2020. doi: 10.1109/JAS.2019.1911828
    [53]
    L. H. Kong, W. He, C. G. Yang, Z. J. Li, and C. Y. Sun, “Adaptive fuzzy control for coordinated multiple robots with constraint using impedance learning,” IEEE Trans. Cybernet., vol. 49, no. 8, pp. 3052–3063, Aug. 2019. doi: 10.1109/TCYB.2018.2838573
    [54]
    H. Qiao, M. Wang, J. H. Su, S. X. Jia, and R. Li, “The concept of. attractive region in environment” and its application in high-precision tasks with low-precision systems,” IEEE/ASME Trans. Mechatron., vol. 20, no. 5, pp. 2311–2327, Oct. 2015. doi: 10.1109/TMECH.2014.2375638
    [55]
    G. Xie, A. Shangguan, R. Fei, W. J. Ji, W. G. Ma, and X. H. Hei, “Motion trajectory prediction based on a CNN-LSTM sequential model,” Sci. China Inform. Sci., vol. 63, no. 11, Article No. 212207, Oct. 2020. doi: 10.1007/s11432-019-2761-y
    [56]
    M. Bortolini, M. Faccio, F. G. Galizia, M. Gamberi, and F. Pilati, “Design, engineering and testing of an innovative adaptive automation assembly system,” Assemb. Autom., vol. 40, no. 3, pp. 531–540, Feb. 2020. doi: 10.1108/AA-06-2019-0103
    [57]
    G. Y. Wu, J. Sun, and J. Chen, “Optimal linear quadratic regulator of switched systems,” IEEE Trans. Autom. Control, vol. 64, no. 7, pp. 2898–2904, Jul. 2019. doi: 10.1109/TAC.2018.2872204
    [58]
    M. Chen, S. Y. Shao, and B. Jiang, “Adaptive neural control of uncertain nonlinear systems using disturbance observer,” IEEE Trans. Cybernet., vol. 47, no. 10, pp. 3110–3123, Oct. 2017. doi: 10.1109/TCYB.2017.2667680
    [59]
    X. B. Yu, W. He, Y. Li, C. Q. Xue, Y. K. Sun, and Y. Wang, “Adaptive NN impedance control for an SEA-driven robot,” Sci. China Inform. Sci., vol. 63, no. 5, Article No. 159207, Feb. 2020. doi: 10.1007/s11432-018-9631-7

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views (704) PDF downloads(35) Cited by()

    Highlights

    • The infinite dimensional system model is presented for describing high-rise building structures which have a large inertial load.
    • On the basis of the system model and with the use of the Lyapunov’s direct method, a boundary controller is proposed and the closed-loop system is uniformly bounded in the time domain.
    • By using the Smart Structure laboratory platform, a set of experiments are designed to discuss the importance of vibration control and the effectiveness of the proposed method.

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return