A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 8 Issue 9
Sep.  2021

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 6.171, Top 11% (SCI Q1)
    CiteScore: 11.2, Top 5% (Q1)
    Google Scholar h5-index: 51, TOP 8
Turn off MathJax
Article Contents
Mohamed Amine Ferrag, Lei Shu and Kim-Kwang Raymond Choo, "Fighting COVID-19 and Future Pandemics With the Internet of Things: Security and Privacy Perspectives," IEEE/CAA J. Autom. Sinica, vol. 8, no. 9, pp. 1477-1499, Sept. 2021. doi: 10.1109/JAS.2021.1004087
Citation: Mohamed Amine Ferrag, Lei Shu and Kim-Kwang Raymond Choo, "Fighting COVID-19 and Future Pandemics With the Internet of Things: Security and Privacy Perspectives," IEEE/CAA J. Autom. Sinica, vol. 8, no. 9, pp. 1477-1499, Sept. 2021. doi: 10.1109/JAS.2021.1004087

Fighting COVID-19 and Future Pandemics With the Internet of Things: Security and Privacy Perspectives

doi: 10.1109/JAS.2021.1004087
Funds:  This work was supported in part by the Research Start-Up Fund for Talent Researcher of Nanjing Agricultural University (77H0603). The work of K.-K. R. Choo was supported only by the Cloud Technology Endowed Professorship
More Information
  • The speed and pace of the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; also referred to as novel Coronavirus 2019 and COVID-19) have resulted in a global pandemic, with significant health, financial, political, and other implications. There have been various attempts to manage COVID-19 and other pandemics using technologies such as Internet of Things (IoT) and 5G/6G communications. However, we also need to ensure that IoT devices used to facilitate COVID-19 monitoring and treatment (e.g., medical IoT devices) are secured, as the compromise of such devices can have significant consequences (e.g., life-threatening risks to COVID-19 patients). Hence, in this paper we comprehensively survey existing IoT-related solutions, potential security and privacy risks and their requirements. For example, we classify existing security and privacy solutions into five categories, namely: authentication and access control solutions, key management and cryptography solutions, blockchain-based solutions, intrusion detection systems, and privacy-preserving solutions. In each category, we identify the associated challenges. We also identify a number of recommendations to inform future research.


  • loading
  • [1]
    WHO, “Novel coronavirus (2019-nCoV): Situation report-10, ” World Health Organization, Jan. 2020.
    Y. Y. Zheng, Y. T. Ma, J. Y. Zhang, and X. Xie, “COVID-19 and the cardiovascular system,” Nat. Rev. Cardiol., vol. 17, no. 5, pp. 259–260, Mar. 2020. doi: 10.1038/s41569-020-0360-5
    D. S. W. Ting, L. Carin, V. Dzau, and T. Y. Wong, “Digital technology and COVID-19,” Nat. Med., vol. 26, no. 4, pp. 459–461, Mar. 2020. doi: 10.1038/s41591-020-0824-5
    V. Chamola, V. Hassija, V. Gupta, and M. Guizani, “A comprehensive review of the COVID-19 pandemic and the role of IoT, drones, AI, blockchain, and 5G in managing its impact,” IEEE Access, vol. 8, pp. 90225–90265, May 2020. doi: 10.1109/ACCESS.2020.2992341
    M. C. Chang and D. Park, “How can blockchain help people in the event of pandemics such as the COVID-19?” J. Med. Syst., vol. 44, no. 5, Article No. 102, Apr. 2020. doi: 10.1007/s10916-020-01577-8
    V. Shubina, S. Holcer, M. Gould, and E. S. Lohan, “Survey of decentralized solutions with mobile devices for user location tracking, proximity detection, and contact tracing in the COVID-19 Era,” Data, vol. 5, no. 4, Article No. 87, Sept. 2020. doi: 10.3390/data5040087
    L. Garg, E. Chukwu, N. Nasser, C. Chakraborty, and G. Garg, “Anonymity preserving IoT-based COVID-19 and other infectious disease contact tracing model,” IEEE Access, vol. 8, pp. 159402–159414, Aug. 2020. doi: 10.1109/ACCESS.2020.3020513
    D. Vekaria, A. Kumari, S. Tanwar, and N. Kumar, “Boost: An AI-based data analytics scheme for COVID-19 prediction and economy boosting,” IEEE Internet Things J., DOI: 10.1109/JIOT.2020.3047539
    Harvard College. Surveys, apps to track COVID-19. [Online]. Available: https://www.hsph.harvard.edu/coronavirus/covid-19-response-public-health-in-action/surveys-apps-to-track-covid-19/, Accessed on: Dec. 27, 2020.
    Covid symptom study. [Online]. Available: https://covid.joinzoe.com/us-2, Accessed on: Dec. 27, 2020.
    Covid symptom study. [Online]. Available: https://www.webmd.com/lung/coronavirus-apps, Accessed on: Dec. 27, 2020.
    A. H. M. Aman, W. H. Hassan, S. Sameen, Z. S. Attarbashi, M. Alizadeh, and L. A. Latiff, “IoMT amid COVID-19 pandemic: Application, architecture, technology, and security,” J. Netw. Comput. Appl., vol. 174, Article No. 102886, Jan. 2021. doi: 10.1016/j.jnca.2020.102886
    M. Kolhar, F. Al-Turjman, A. Alameen, and M. M. Abualhaj, “A three layered decentralized IoT biometric architecture for city lockdown during COVID-19 outbreak,” IEEE Access, vol. 8, pp. 163608–163617, Sept. 2020. doi: 10.1109/ACCESS.2020.3021983
    I. Ahmed, A. Ahmad, and G. Jeon, “An IoT based deep learning framework for early assessment of COVID-19,” IEEE Internet Things J., 2020. DOI: 10.1109/JIOT.2020.3034074
    Z. Fadlullah, M. M. Fouda, A. S. K. Pathan, N. Nasser, A. Benslimane, and Y. D. Lin, “Smart IoT solutions for combating the COVID-19 pandemic,” IEEE Internet Things Mag., vol. 3, no. 3, pp. 10–11, Oct. 2020. doi: 10.1109/MIOT.2020.9241464
    S. Misra, P. K. Deb, N. Koppala, A. Mukherjee, and S. W. Mao, “S-NAV: Safety-aware IoT navigation tool for avoiding COVID-19 hotspots,” IEEE Internet Things J., vol. 8, no. 8, pp. 6975–6982, Nov. 2020.
    S. Munzert, P. Selb, A. Gohdes, L. F. Stoetzer, W. Lowe, “Tracking and promoting the usage of a COVID-19 contact tracing app,” Nature Human Behaviour, vol. 5, no. 2, pp. 247–255, 2021.
    A. Roy, F. H. Kumbhar, H. S. Dhillon, N. Saxena, S. Y. Shin, and S. Singh, “Efficient monitoring and contact tracing for COVID-19: A smart IoT-based framework,” IEEE Internet Things Mag., vol. 3, no. 3, pp. 17–23, Oct. 2020. doi: 10.1109/IOTM.0001.2000145
    M. Mukherjee, R. Matam, L. Shu, L. Maglaras, M. A. Ferrag, N. Choudhury, and V. Kumar, “Security and privacy in fog computing: Challenges,” IEEE Access, vol. 5, pp. 19293–19304, Sept. 2017. doi: 10.1109/ACCESS.2017.2749422
    Y. Abdulsalam and M. S. Hossain, “COVID-19 networking demand: An auction-based mechanism for automated selection of edge computing services,” IEEE Trans. Netw. Sci. Eng., 2020. DOI: 10.1109/TNSE.2020.3026637
    Y. Siriwardhana, C. De Alwis, G. Gur, M. Ylianttila, and M. Liyanage, “The fight against the COVID-19 pandemic with 5G technologies,” IEEE Eng. Manag. Rev., vol. 48, no. 3, pp. 72–84, Aug. 2020. doi: 10.1109/EMR.2020.3017451
    M. Mukherjee, M. A. Ferrag, L. Maglaras, A. Derhab, and M. Aazam, “Security and privacy issues and solutions for fog,” Fog and Fogonomics: Challenges and Practices of Fog Computing, Communication, Networking, Strategy, and Economics, pp. 353–374, 2020.
    I. F. Akyildiz, M. Ghovanloo, U. Guler, T. Ozkaya-Ahmadov, A. F. Sarioglu, and B. D. Unluturk, “PANACEA: An internet of bio-nanothings application for early detection and mitigation of infectious diseases,” IEEE Access, vol. 8, pp. 140512–140523, Jul. 2020. doi: 10.1109/ACCESS.2020.3012139
    N. Ahmed, R. A. Michelin, W. L. Xue, S. Ruj, R. Malaney, S. S. Kanhere, A. Seneviratne, W. Hu, H. Janicke, and S. K. Jha, “A survey of COVID-19 contact tracing apps,” IEEE Access, vol. 8, pp. 134577–134601, Jul. 2020. doi: 10.1109/ACCESS.2020.3010226
    M. Ndiaye, S. S. Oyewobi, A. M. Abu-Mahfouz, G. P. Hancke, A. M. Kurien, and K. Djouani, “IoT in the wake of COVID-19: A survey on contributions, challenges and evolution,” IEEE Access, vol. 8, pp. 186821–186839, Oct. 2020. doi: 10.1109/ACCESS.2020.3030090
    M. Nasajpour, S. Pouriyeh, R. M. Parizi, M. Dorodchi, M. Valero, and H. R. Arabnia, “Internet of things for current COVID-19 and future pandemics: An exploratory study,” J. Healthc. Inform. Res., vol. 4, no. 4, pp. 325–364, Nov. 2020. doi: 10.1007/s41666-020-00080-6
    A. Sufian, A. Ghosh, A. S. Sadiq, and F. Smarandache, “A survey on deep transfer learning to edge computing for mitigating the COVID-19 pandemic,” J. Syst. Arch., vol. 108, p. 101830, Sept. 2020.
    A. A. Hussain, O. Bouachir, F. Al-Turjman, and M. Aloqaily, “AI techniques for COVID-19,” IEEE Access, vol. 8, pp. 128776–128795, Jul. 2020. doi: 10.1109/ACCESS.2020.3007939
    O. S. Albahri, A. A. Zaidan, A. S. Albahri, B. B. Zaidan, K. H. Abdulkareem, Z. T. Al-Qaysi, A. H. Alamoodi, A. M. Aleesa, M. A. Chyad, R. M. Alesa, L. C. Kem, M. M. Lakulu, A. B. Ibrahim, and N. A. Rashid, “Systematic review of artificial intelligence techniques in the detection and classification of COVID-19 medical images in terms of evaluation and benchmarking: Taxonomy analysis, challenges, future solutions and methodological aspects,” J. Infection Public Health, vol. 13, no. 10, pp. 1381–1396, Oct. 2020. doi: 10.1016/j.jiph.2020.06.028
    F. Shi, J. Wang, J. Shi, Z. Y. Wu, Q. Wang, Z. Y. Tang, K. L. He, Y. H. Shi, and D. G. Shen, “Review of artificial intelligence techniques in imaging data acquisition, segmentation, and diagnosis for COVID-19,” IEEE Rev. Biomed. Eng., vol. 14, pp. 4–15, Apr. 2020.
    D. Marbouh, T. Abbasi, F. Maasmi, I. A. Omar, M. S. Debe, K. Salah, R. Jayaraman, and S. Ellahham, “Blockchain for COVID-19: Review, opportunities, and a trusted tracking system,” Arab. J. Sci. Eng., vol. 45, no. 12, pp. 9895–9911, Oct. 2020. doi: 10.1007/s13369-020-04950-4
    A. Kalla, T. Hewa, R. A. Mishra, M. Ylianttila, and M. Liyanage, “The role of blockchain to fight against COVID-19,” IEEE Eng. Manag. Rev., vol. 48, no. 3, pp. 85–96, Aug. 2020. doi: 10.1109/EMR.2020.3014052
    V. Jahmunah, V. K. Sudarshan, S. L. Oh, R. Gururajan, R. Gururajan, X. J. Zhou, X. H. Tao, O. Faust, E. J. Ciaccio, K. H. Ng, and U. R. Acharya, “Future IoT tools for COVID-19 contact tracing and prediction: A review of the state-of-the-science,” Int. J. Imaging Syst. Technol., vol. 31, no. 2, pp. 455–471, Jun. 2021. doi: 10.1002/ima.22552
    M. S. Nawaz, P. Fournier-Viger, A. Shojaee, and H. Fujita, “Using artificial intelligence techniques for COVID-19 genome analysis,” Appl. Intell., vol. 51, no. 5, pp. 3086–3103, Feb. 2021. doi: 10.1007/s10489-021-02193-w
    H. Snyder, “Literature review as a research methodology: An overview and guidelines,” J. Bus. Res., vol. 104, pp. 333–339, Nov. 2019. doi: 10.1016/j.jbusres.2019.07.039
    H. Lin, S. Garg, J. Hu, X. D. Wang, M. J. Piran, and M. S. Hossain, “Privacy-enhanced data fusion for COVID-19 applications in intelligent internet of medical things,” IEEE Internet Things J., 2020. DOI: 10.1109/JIOT.2020.3033129
    M. A. Ferrag, L. Maglaras, and A. Derhab, “Authentication and authorization for mobile IoT devices using biofeatures: Recent advances and future trends,” Secur. Commun. Netw., vol. 2019, p. 5452870, May 2019.
    M. A. Ferrag, L. Maglaras, A. Derhab, and H. Janicke, “Authentication schemes for smart mobile devices: Threat models, countermeasures, and open research issues,” Telecommun. Syst., vol. 73, no. 2, pp. 317–348, Feb. 2020. doi: 10.1007/s11235-019-00612-5
    M. A. Ferrag, L. Maglaras, A. Argyriou, D. Kosmanos, and H. Janicke, “Security for 4G and 5G cellular networks: A survey of existing authentication and privacy-preserving schemes,” J. Netw. Comput. Appl., vol. 101, pp. 55–82, Jan. 2018. doi: 10.1016/j.jnca.2017.10.017
    M. A. Ferrag, L. A. Maglaras, H. Janicke, J. M. Jiang, and L. Shu, “Authentication protocols for internet of things: A comprehensive survey,” Secur. Commun. Netw., vol. 2017, p. 6562953, Nov. 2017.
    D. B. He, N. Kumar, H. Q. Wang, L. N. Wang, K. K. R. Choo, and A. Vinel, “A provably-secure cross-domain handshake scheme with symptoms- matching for mobile healthcare social network,” IEEE Trans. Dependable Secure Comput., vol. 15, no. 4, pp. 633–645, Jul. 2016.
    D. Dolev and A. Yao, “On the security of public key protocols,” IEEE Trans. Inf. Theory, vol. 29, no. 2, pp. 198–208, Mar. 1983. doi: 10.1109/TIT.1983.1056650
    H. W. Tan, P. Kim, and I. Chung, “Practical homomorphic authentication in cloud-assisted VANETs with Blockchain-based healthcare monitoring for pandemic control,” Electronics, vol. 9, no. 10, p. 1683, Oct. 2020.
    T. Alladi, V. Chamola, and Naren, “HARCI: A two-way authentication protocol for three entity healthcare IoT networks,” IEEE J. Sel. Areas Commun., vol. 39, no. 2, pp. 361–369, Feb. 2021. doi: 10.1109/JSAC.2020.3020605
    S. Challa, A. K. Das, V. Odelu, N. Kumar, S. Kumari, M. K. Khan, and A. V. Vasilakos, “An efficient ECC-based provably secure three-factor user authentication and key agreement protocol for wireless healthcare sensor networks,” Comput. Electr. Eng., vol. 69, pp. 534–554, Jul. 2018. doi: 10.1016/j.compeleceng.2017.08.003
    J. Srinivas, A. K. Das, N. Kumar, and J. J. P. C. Rodrigues, “Cloud centric authentication for wearable healthcare monitoring system,” IEEE Trans. Dependable Secure Comput., vol. 17, no. 5, pp. 942–956, Sep.–Oct. 2020. doi: 10.1109/TDSC.2018.2828306
    M. A. Ferrag, M. Derdour, M. Mukherjee, A. Derhab, L. Maglaras, and H. Janicke, “Blockchain technologies for the internet of things: Research issues and challenges,” IEEE Internet Things J., vol. 6, no. 2, pp. 2188–2204, Apr. 2019. doi: 10.1109/JIOT.2018.2882794
    H. R. Hasan, K. Salah, R. Jayaraman, J. Arshad, I. Yaqoob, M. Omar, and S. Ellahham, “Blockchain-based solution for COVID-19 digital medical passports and immunity certificates,” IEEE Access, vol. 8, pp. 222093–222108, Dec. 2020. doi: 10.1109/ACCESS.2020.3043350
    A. Shukla, N. Patel, S. Tanwar, B. Sadoun, and M. S. Obaidat, “BDoTs: Blockchain-based evaluation scheme for online teaching under COVID-19 environment,” in Proc. Int. Conf. Computer, Information and Telecommunication Systems, Hangzhou, China, 2020, pp. 1–5.
    P. Huang, L. K. Guo, M. Li, and Y. G. Fang, “Practical privacy-preserving ECG-based authentication for IoT-based healthcare,” IEEE Internet Things J., vol. 6, no. 5, pp. 9200–9210, Jul. 2019. doi: 10.1109/JIOT.2019.2929087
    Y. Zhang, R. Gravina, H. M. Lu, M. Villari, and G. Fortino, “PEA: Parallel electrocardiogram-based authentication for smart healthcare systems,” J. Netw. Comput. Appl., vol. 117, pp. 10–16, Sept. 2018. doi: 10.1016/j.jnca.2018.05.007
    S. Roy, A. K. Das, S. Chatterjee, N. Kumar, S. Chattopadhyay, and J. J. P. C. Rodrigues, “Provably secure fine-grained data access control over multiple cloud servers in mobile cloud computing based healthcare applications,” IEEE Trans. Ind. Inform., vol. 15, no. 1, pp. 457–468, Jan. 2019. doi: 10.1109/TII.2018.2824815
    F. Wu, L. L. Xu, S. Kumari, X. Li, A. K. Das, and J. Shen, “A lightweight and anonymous RFID tag authentication protocol with cloud assistance for e-healthcare applications,” J. Ambient Intell. Human. Comput., vol. 9, no. 4, pp. 919–930, Aug. 2018. doi: 10.1007/s12652-017-0485-5
    R. Chaudhary, A. Jindal, G. S. Aujla, N. Kumar, A. K. Das, and N. Saxena, “LSCSH: Lattice-based secure cryptosystem for smart healthcare in smart cities environment,” IEEE Commun. Mag., vol. 56, no. 4, pp. 24–32, Apr. 2018. doi: 10.1109/MCOM.2018.1700787
    A. K. Das, A. K. Sutrala, V. Odelu, and A. Goswami, “A secure smartcard-based anonymous user authentication scheme for healthcare applications using wireless medical sensor networks,” Wireless Pers. Commun., vol. 94, no. 3, pp. 1899–1933, Jun. 2017. doi: 10.1007/s11277-016-3718-6
    L. P. Zhang, Y. X. Zhang, S. Y. Tang, and H. Luo, “Privacy protection for e-health systems by means of dynamic authentication and three-factor key agreement,” IEEE Trans. Ind. Electron., vol. 65, no. 3, pp. 2795–2805, Mar. 2018. doi: 10.1109/TIE.2017.2739683
    M. Wazid, A. K. Das, N. Kumar, M. Conti, and A. V. Vasilakos, “A novel authentication and key agreement scheme for implantable medical devices deployment,” IEEE J. Biomed. Health Inform., vol. 22, no. 4, pp. 1299–1309, Jul. 2018. doi: 10.1109/JBHI.2017.2721545
    J. Zhou, Z. F. Cao, X. L. Dong, and X. D. Lin, “PPDM: A privacy-preserving protocol for cloud-assisted e-healthcare systems,” IEEE J. Sel. Top. Signal Process., vol. 9, no. 7, pp. 1332–1344, Oct. 2015. doi: 10.1109/JSTSP.2015.2427113
    J. Zhou, Z. F. Cao, X. L. Dong, N. X. Xiong, and A. V. Vasilakos, “4S: A secure and privacy-preserving key management scheme for cloud- assisted wireless body area network in m-healthcare social networks,” Inf. Sci., vol. 314, pp. 255–276, Sept. 2015. doi: 10.1016/j.ins.2014.09.003
    M. Masud, G. S. Gaba, S. Alqahtani, G. Muhammad, B. B. Gupta, P. Kumar, and A. Ghoneim, “A lightweight and robust secure key establishment protocol for internet of medical things in COVID-19 patients care,” IEEE Internet Things J., 2020. DOI: 10.1109/JIOT.2020.3047662
    M. Wazid, B. Bera, A. Mitra, A. K. Das, and R. Ali, “Private blockchain-envisioned security framework for AI-enabled IoT-based drone-aided healthcare services,” in Proc. 2nd ACM MobiCom Workshop on Drone Assisted Wireless Communications for 5G and Beyond, London, UK, 2020, pp. 37–42.
    S. Saha, A. K. Sutrala, A. K. Das, N. Kumar, and J. J. P. C. Rodrigues, “On the design of blockchain-based access control protocol for IoT-enabled healthcare applications,” in Proc. IEEE Int. Conf. Communications, Dublin, Ireland, 2020, pp. 1–6.
    G. S. Aujla and A. Jindal, “A decoupled Blockchain approach for edge- envisioned IoT-based healthcare monitoring,” IEEE J. Sel. Areas Commun., vol. 39, no. 2, Feb. 2021.
    G. Thamilarasu, A. Odesile, and A. Hoang, “An intrusion detection system for internet of medical things,” IEEE Access, vol. 8, pp. 181560–181576, Sept. 2020. doi: 10.1109/ACCESS.2020.3026260
    K. P. Yu, L. Tan, X. L. Shang, J. J. Huang, G. Srivastava, and P. Chatterjee, “Efficient and privacy-preserving medical research support platform against COVID-19: A blockchain-based approach,” IEEE Consum. Electron. Mag., vol. 10, no. 2, pp. 111–120, Mar. 2021. doi: 10.1109/MCE.2020.3035520
    P. Kumar, G. P. Gupta, and R. Tripathi, “An ensemble learning and fog- cloud architecture-driven cyber-attack detection framework for IoMT networks,” Comput. Commun., vol. 166, pp. 110–124, Jan. 2021. doi: 10.1016/j.comcom.2020.12.003
    W. J. Li, S. Tug, W. Z. Meng, and Y. Wang, “Designing collaborative blockchained signature-based intrusion detection in IoT environments,” Future Gener. Comput. Syst., vol. 96, pp. 481–489, Jul. 2019. doi: 10.1016/j.future.2019.02.064
    D. J. He, Q. Qiao, Y. Gao, J. J. Zheng, S. Chan, J. X. Li, and N. Guizani, “Intrusion detection based on stacked Autoencoder for connected healthcare systems,” IEEE Netw., vol. 33, no. 6, pp. 64–69, Nov.-Dec. 2019. doi: 10.1109/MNET.001.1900105
    F. W. Wang, H. Zhu, X. M. Liu, R. X. Lu, J. F. Hua, H. Li, and H. Li, “Privacy- preserving collaborative model learning scheme for e-healthcare,” IEEE Access, vol. 7, pp. 166054–166065, Nov. 2019. doi: 10.1109/ACCESS.2019.2953495
    G. M. Wang, R. X. Lu, C. Huang, and Y. L. Guan, “An efficient and privacy- preserving pre-clinical guide scheme for mobile e-healthcare,” J. Inf. Secur. Appl., vol. 46, pp. 271–280, 2019.
    Y. D. Zheng, R. X. Lu, and J. Shao, “Achieving efficient and privacy- preserving k-NN query for outsourced ehealthcare data,” J. Med. Syst., vol. 43, no. 5, Article No. 123, Mar. 2019. doi: 10.1007/s10916-019-1229-1
    X. Yang, R. X. Lu, J. Shao, X. H. Tang, and H. M. Yang, “An efficient and privacy-preserving disease risk prediction scheme for e-healthcare,” IEEE Internet Things J., vol. 6, no. 2, pp. 3284–3297, Apr. 2019. doi: 10.1109/JIOT.2018.2882224
    C. Zhang, L. H. Zhu, C. Xu, and R. X. Lu, “PPDP: An efficient and privacy- preserving disease prediction scheme in cloud-based e-healthcare system,” Future Gener. Comput. Syst., vol. 79, pp. 16–25, Feb. 2018. doi: 10.1016/j.future.2017.09.002
    H. Zhu, X. X. Liu, R. X. Lu, and H. Li, “Efficient and privacy-preserving online medical prediagnosis framework using nonlinear SVM,” IEEE J. Biomed. Health Inform., vol. 21, no. 3, pp. 838–850, May 2017. doi: 10.1109/JBHI.2016.2548248
    X. M. Liu, R. X. Lu, J. F. Ma, L. Chen, and B. D. Qin, “Privacy-preserving patient-centric clinical decision support system on naive Bayesian classification,” IEEE J. Biomed. Health Inform., vol. 20, no. 2, pp. 655–668, Mar. 2016. doi: 10.1109/JBHI.2015.2407157
    M. A. Ferrag and L. Shu, “The performance evaluation of blockchain-based security and privacy systems for the internet of things: A tutorial,” IEEE Internet Things J., 2021. DOI: 10.1109/JIOT.2021.3078072
    L. Maglaras, T. Cruz, M. A. Ferrag, and H. Janicke, “Teaching the process of building an intrusion detection system using data from a small-scale SCADA testbed,” Internet Technol. Lett., vol. 3, no. 1, Article No. e132, Feb. 2020. doi: 10.1002/itl2.132
    R. Mitchell and I. R. Chen, “Behavior rule specification-based intrusion detection for safety critical medical cyber physical systems,” IEEE Trans. Dependable Secure Comput., vol. 12, no. 1, pp. 16–30, Jan.-Feb. 2015. doi: 10.1109/TDSC.2014.2312327
    IBM. Cloud. [Online]. Available: https://www.ibm.com/cloud, Accessed on: Mar. 04, 2021.
    Google cloud platform. [Online]. Available: https://www.bbsmax.com/A/kPzO8jL7Jx/, Accessed on: Mar. 04, 2021.
    Microsoft azure. [Online]. Available: https://azure.microsoft.com/en-us/, Accessed on: Mar. 04, 2021.
    Amazon Web Services. [Online]. Available: https://aws.amazon.com/, Accessed on: Mar. 04, 2021.
    Dell EMC. [Online]. Available: https://www.delltechnologies.com/en-in/service-providers/edge-computing.htm, Accessed on: Mar. 04, 2021.
    FUJITSU IoT solution INTELLIEDGE. [Online]. Available: https://www.fujitsu.com/global/products/computing/pc/edge-computing/, Accessed on: Mar. 04, 2021.
    Google’s edge TPU. [Online]. Available: https://cloud.google.com/edge-tpu, Accessed on: Mar. 04, 2021.
    Microsoft’s vision AI toolkit. [Online]. Available: https://azure.github.io/Vision-AI-DevKit-Pages/, Accessed on: Mar. 04, 2021.
    Lighty. [Online]. Available: https://lighty.io/, Accessed on: Mar. 04, 2021.
    Cherry. [Online]. Available: https://github.com/superkkt/cherry/, Accessed on: Mar. 04, 2021.
    OpenBaton. [Online]. Available: https://openbaton.github.io/, Accessed on: Mar. 04, 2021.
    P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and Parulkar G, “ONOS: Towards an open, distributed SDN OS,” in Proc. 3rd Workshop on Hot Topics in Software Defined Networking, Chicago, USA, 2014, pp. 1–6.
    OPENFV. [Online]. Available: https://www.opnfv.org/, Accessed on: Mar. 04, 2021.
    Z. K. Khattak, M. Awais, and A. Iqbal, “Performance evaluation of OpenDaylight SDN controller,” in Proc. 20th IEEE Int. Conf. Parallel and Distributed Systems, Hsinchu, Taiwan, China, 2014, pp. 671–676.
    M. A. Ferrag, L. Maglaras, H. Janicke, and R. Smith, “Deep learning techniques for cyber security intrusion detection: A detailed analysis,” in Proc. 6th Int. Symp. for ICS & SCADA Cyber Security Research, 2019, pp. 126–136.
    A. M. Ismael and A. Sengur, “Deep learning approaches for COVID-19 detection based on chest X-ray images,” Exp. Syst. Appl., vol. 164, Article No. 114054, Feb. 2021. doi: 10.1016/j.eswa.2020.114054
    M. M. Islam, F. Karray, R. Alhajj, and J. Zeng, “A review on deep learning techniques for the diagnosis of novel coronavirus (COVID-19),” IEEE Access, vol. 9, pp. 30551–30572, Feb. 2021. doi: 10.1109/ACCESS.2021.3058537
    Boeing. [Online]. Available: https://www.boeing.com/defense/autonomous-systems/index.page, Accessed on: Mar. 04, 2021.
    DHL parcelcopter. [Online]. Available: https://discover.dhl.com/business/business-ethics/parcelcopter-drone-technology, Accessed on: Mar. 04, 2021.
    Zipline. [Online]. Available: https://flyzipline.com/, Accessed on: Mar. 04, 2021.
    Wingcopter. [Online]. Available: https://wingcopter.com/, Accessed on: Mar. 04, 2021.
    Flytrex. [Online]. Available: https://flytrex.com/, Accessed on: Mar. 04, 2021.
    UPS. UPS flight forwardTM drone delivery. [Online]. Available: https://www.ups.com/us/en/services/shipping-services/flight-forward-drones.page, Accessed on: Mar. 04, 2021.
    Amazon prime air. [Online]. Available: https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011, Accessed on: Mar. 04, 2021.
    Wing. [Online]. Available: https://wing.com/, Accessed on: Mar. 04, 2021.
    'T. M. Fernandez-Carames and P. Fraga-Lamas, “Towards post-quantum blockchain: A review on blockchain cryptography resistant to quantum computing attacks,” IEEE Access, vol. 8, pp. 21091–21116, Jan. 2020. doi: 10.1109/ACCESS.2020.2968985
    M. S. Hossain, G. Muhammad, and N. Guizani, “Explainable AI and mass surveillance system-based healthcare framework to combat COVID-19 like pandemics,” IEEE Netw., vol. 34, no. 4, pp. 126–132, Jul.–Aug. 2020. doi: 10.1109/MNET.011.2000458
    “AI puts Moderna within striking distance of beating COVID-19,” https://digital.hbs.edu/artificial-intelligence-machine-learning/ai-puts-moderna-within-striking-distance-of-beating-COVID-19/, Accessed on: Dec. 27, 2020.
    A. Ulhaq, J. Born, A. Khan, D. P. S. Gomes, S. Chakraborty, and M. Paul, “COVID-19 control by computer vision approaches: A survey,” IEEE Access, vol. 8, pp. 179437–179456, Sept. 2020. doi: 10.1109/ACCESS.2020.3027685
    E. Quiring, D. Klein, D. Arp, M. Johns, and K. Rieck, “Adversarial preprocessing: Understanding and preventing image-scaling attacks in machine learning,” in Proc. 29th USENIX Security Symp., 2020.
    A. Rahman, M. S. Hossain, N. A. Alrajeh, and F. Alsolami, “Adversarial examples–security threats to COVID-19 deep learning systems in medical IoT devices,” IEEE Internet Things J., vol. 8, no. 12, pp. 9603–9610, 2021.
    H. Ledford, D. Cyranoski, and R. Van Noorden, “The UK has approved a COVID vaccine-here’s what scientists now want to know,” Nature, vol. 588, no. 7837, pp. 205–206, Dec. 2020. doi: 10.1038/d41586-020-03441-8
    ZDNET. IoT solutions power safe, speedy and cold COVID-19 vaccine delivery. [online]. Available: https://www.zdnet.com/article/iot-solutions-power-safe-speedy-and-cold-COVID-19-vaccine-delivery/, Accessed on: Dec. 27, 2020.
    B. T. Chen, J. F. Wan, L. Shu, P. Li, M. Mukherjee, and B. X. Yin, “Smart factory of industry 4.0: Key technologies, application case, and challenges,” IEEE Access, vol. 6, pp. 6505–6519, Dec. 2017.
    I. F. Akyildiz, M. Pierobon, S. Balasubramaniam, and Y. Koucheryavy, “The internet of bio-nano things,” IEEE Commun. Mag., vol. 53, no. 3, pp. 32–40, Mar. 2015. doi: 10.1109/MCOM.2015.7060516
    N. Saeed, M. H. Loukil, H. Sarieddeen, T. Y. Al-Naffouri, and M. S. Alouini, “Body-centric terahertz networks: Prospects and challenges,” Pre-print, 2020. [Online]. Available: http://hdl.handle.net/10754/664913.
    CNBC. Use of surveillance to fight coronavirus raises concerns about government power after pandemic ends. [Online]. Available: https://www.cnbc.com/2020/03/27/coronavirus-surveillance-used-by-governments-to-fight-pandemic-privacy-concerns.html, Accessed on: Dec. 27, 2020.
    P. Mishra, A. Biswal, S. Garg, R. X. Lu, M. Tiwary, and D. Puthal, “Software defined internet of things security: Properties, state of the art, and future research,” IEEE Wirel. Commun., vol. 27, no. 3, pp. 10–16, Jun. 2020. doi: 10.1109/MWC.001.1900318
    H. Xu, L. Zhang, O. Onireti, Y. Fang, W. J. Buchanan, and M. A. Imran, “BeepTrace: Blockchain-enabled privacy-preserving contact tracing for COVID-19 pandemic and beyond,” IEEE Internet Things J., vol. 8, no. 5, pp. 3915–3929, Mar. 2021. doi: 10.1109/JIOT.2020.3025953
    P. V. Klaine, L. Zhang, B. P. Zhou, Y. Sun, H. Xu, and M. Imran, “Privacy- preserving contact tracing and public risk assessment using Blockchain for COVID-19 pandemic,” IEEE Internet Things Mag., vol. 3, no. 3, pp. 58–63, Sept. 2020. doi: 10.1109/IOTM.0001.2000078
    P. F. Wang, C. Lin, M. S. Obaidat, Z. Yu, Z. Q. Wei, and Q. Zhang, “Contact tracing incentive for COVID-19 and other pandemic diseases from a crowdsourcing perspective,” IEEE Internet Things J., 2021. DOI: 10.1109/JIOT.2020.3049024
    N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, “Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-IoT dataset,” Future Gener. Comput. Syst., vol. 100, pp. 779–796, Nov. 2019. doi: 10.1016/j.future.2019.05.041
    M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke, “Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study,” J. Inf. Secur. Appl., vol. 50, p. 102419, Feb. 2020.


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(5)

    Article Metrics

    Article views (1292) PDF downloads(124) Cited by()


    • IoT-based COVID-19 and pandemic preventative solutions (e.g., vaccine supply chain)
    • Blockchain-based healthcare and/or pandemic monitoring solutions
    • Machine learning-based approaches to detecting and preventing outbreaks


    DownLoad:  Full-Size Img  PowerPoint