IEEE/CAA Journal of Automatica Sinica
Citation:  Mohammad Saeed Sarafraz and Mohammad Saleh Tavazoei, "A Unified OptimizationBased Framework to Adjust Consensus Convergence Rate and Optimize the Network Topology in Uncertain MultiAgent Systems," IEEE/CAA J. Autom. Sinica, vol. 8, no. 9, pp. 15391548, Sept. 2021. doi: 10.1109/JAS.2021.1004111 
[1] 
J. H. Qin, Q. C. Ma, Y. Shi, and L. Wang, “Recent advances in consensus of multiagent systems: A brief survey,” IEEE Trans. Ind. Electron., vol. 64, no. 6, pp. 4972–4983, Jun. 2016.

[2] 
R. OlfatiSaber, “Flocking for multiagent dynamic systems: Algorithms and theory,” IEEE Trans. Automat. Contr., vol. 51, no. 3, pp. 401–420, Mar. 2006. doi: 10.1109/TAC.2005.864190

[3] 
H. G. Tanner, A. Jadbabaie, and G. J. Pappas, “Flocking in fixed and switching networks,” IEEE Trans. Automat. Contr., vol. 52, no. 5, pp. 863–868, May 2007. doi: 10.1109/TAC.2007.895948

[4] 
Q. Wang, Y. Z. Wang, and H. X. Zhang, “The formation control of multiagent systems on a circle,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 148–154, Jan. 2016.

[5] 
A. Amini, A. Asif, and A. Mohammadi, “Formationcontainment control using dynamic eventtriggering mechanism for multiagent systems,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1235–1248, Sept. 2020.

[6] 
U. A. Khan and J. M. F. Moura, “Distributing the Kalman filter for largescale systems,” IEEE Trans. Signal Process., vol. 56, no. 10, pp. 4919–4935, Oct. 2008. doi: 10.1109/TSP.2008.927480

[7] 
L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor fusion based on average consensus,” in Proc. 4th Int. Symp. Information Processing in Sensor Networks, Boise, ID, USA, 2005, pp. 63–70.

[8] 
F. Dörfler, M. Chertkov, and F. Bullo, “Synchronization in complex oscillator networks and smart grids,” Proc. Natl. Acad. Sci. USA, vol. 110, no. 6, pp. 2005–2010, Jan. 2013. doi: 10.1073/pnas.1212134110

[9] 
W. H. Liu, F. Q. Deng, J. R. Liang, and H. J. Liu, “Distributed average consensus in multiagent networks with limited bandwidth and timedelays,” IEEE/CAA J. Autom. Sinica, vol. 1, no. 2, pp. 193–203, Apr. 2014. doi: 10.1109/JAS.2014.7004550

[10] 
D. Zhang, L. Liu, and G. Feng, “Consensus of heterogeneous linear multiagent systems subject to aperiodic sampleddata and DoS attack,” IEEE Trans. Cybern., vol. 49, no. 4, pp. 1501–1511, Apr. 2019. doi: 10.1109/TCYB.2018.2806387

[11] 
S. Chattopadhyay, H. Y. Dai, and D. Y. Eun, “Maximization of robustness of interdependent networks under budget constraints,” IEEE Trans. Netw. Sci. Eng., vol. 7, no. 3, pp. 1441–1452, Jul.–Sept. 2019. doi: 10.1109/TNSE.2019.2935068

[12] 
Y. M. Wu and X. X. He, “Secure consensus control for multiagent systems with attacks and communication delays,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 1, pp. 136–142, Jan. 2017. doi: 10.1109/JAS.2016.7510010

[13] 
D. Mukherjee and D. Zelazo, “Robustness of consensus over weighted digraphs,” IEEE Trans. Netw. Sci. Eng., vol. 6, no. 4, pp. 657–670, Oct.–Dec. 2018.

[14] 
Y. W. Hong and A. Scaglione, “Energyefficient broadcasting with cooperative transmissions in wireless sensor networks,” IEEE Trans. Wirel. Commun., vol. 5, no. 10, pp. 2844–2855, Oct. 2006. doi: 10.1109/TWC.2006.04608

[15] 
I. C. Paschalidis and B. B. Li, “Energy optimized topologies for distributed averaging in wireless sensor networks,” IEEE Trans. Automat. Contr., vol. 56, no. 10, pp. 2290–2304, Oct. 2011. doi: 10.1109/TAC.2011.2163875

[16] 
C. Pandana and K. J. R. Liu, “Robust connectivityaware energyefficient routing for wireless sensor networks,” IEEE Trans. Wirel. Commun., vol. 7, no. 10, pp. 3904–3916, Oct. 2008. doi: 10.1109/TWC.2008.070453

[17] 
A. Shariati and Q. Zhao, “Robust leaderfollowing output regulation of uncertain multiagent systems with timevarying delay,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 4, pp. 807–817, Jul. 2018. doi: 10.1109/JAS.2018.7511141

[18] 
C. M. Agulhari, R. C. L. F. Oliveira, and P. L. D. Peres, “LMI relaxations for reducedorder robust H _{∞} control of continuoustime uncertain linear systems,” IEEE Trans. Automat. Contr., vol. 57, no. 6, pp. 1532–1537, Jun. 2011.

[19] 
M. A. Pai, C. D. Vournas, A. N. Michel, and H. Ye, “Applications of interval matrices in power system stabilizer design,” Int. J. Electr. Power Energy Syst., vol. 19, no. 3, pp. 179–184, Mar. 1997. doi: 10.1016/S01420615(96)000415

[20] 
M. C. Pulcherio, M. S. Illindala, and R. K. Yedavalli, “Robust stability region of a microgrid under parametric uncertainty using bialternate sum matrix approach,” IEEE Trans. Power Syst., vol. 33, no. 5, pp. 5553–5562, Sept. 2018. doi: 10.1109/TPWRS.2018.2815980

[21] 
T. Alamo, R. Tempo, D. R. Ramírez, and E. F. Camacho, “A new vertex result for robustness problems with interval matrix uncertainty,” Syst. Control Lett., vol. 57, no. 6, pp. 474–481, Jun. 2008. doi: 10.1016/j.sysconle.2007.11.003

[22] 
W. J. Xiong, T. Hayat, and J. D. Cao, “Interval stability of timevarying twodimensional hierarchical discretetime multiagent systems,” IET Control Theory Appl., vol. 9, no. 1, pp. 114–119, Jan. 2015. doi: 10.1049/ietcta.2014.0893

[23] 
S. X. Guo, “An efficient methodology for robust control of dynamic systems with interval matrix uncertainties,” Int. J. Syst. Sci., vol. 49, no. 7, pp. 1491–1506, Apr. 2018. doi: 10.1080/00207721.2018.1457731

[24] 
Z. H. Xu, H. J. Ni, H. Reza Karimi, and D. Zhang, “A Markovian jump system approach to consensus of heterogeneous multiagent systems with partially unknown and uncertain attack strategies,” Int. J. Robust Nonlinear Control, vol. 30, no. 7, pp. 3039–3053, May 2020. doi: 10.1002/rnc.4923

[25] 
D. Zhang, Z. H. Xu, G. Feng, and H. Y. Li, “Asynchronous resilient output consensus of switched heterogeneous linear multivehicle systems with communication delay,” IEEE/ASME Trans. Mech., vol. 24, no. 6, pp. 2627–2640, Dec. 2019. doi: 10.1109/TMECH.2019.2932322

[26] 
C. P. Bechlioulis, M. A. Demetriou, and K. J. Kyriakopoulos, “A distributed control and parameter estimation protocol with prescribed performance for homogeneous lagrangian multiagent systems,” Auton Robots, vol. 42, no. 8, pp. 1525–1541, Dec. 2018. doi: 10.1007/s1051401897002

[27] 
X. W. Li, Y. C. Soh, and L. H. Xie, “Outputfeedback protocols without controller interaction for consensus of homogeneous multiagent systems: A unified robust control view,” Automatica, vol. 81, pp. 37–45, Jul. 2017. doi: 10.1016/j.automatica.2017.03.001

[28] 
S. E. Li, X. H. Qin, K. Q. Li, J. Q. Wang, and B. Y. Xie, “Robustness analysis and controller synthesis of homogeneous vehicular platoons with bounded parameter uncertainty,” IEEE/ASME Trans. Mech., vol. 22, no. 2, pp. 1014–1025, Apr. 2017. doi: 10.1109/TMECH.2017.2647987

[29] 
S. Boyd, “Convex optimization of graph laplacian eigenvalues,” in Proc. Int. Congr. Math., vol. 3, no. 1–3, pp. 1311–1319, Aug. 2006.

[30] 
M. Rafiee and A. M. Bayen, “Optimal network topology design in multiagent systems for efficient average consensus,” in Proc. 49th IEEE Conf. Decision and Control, Atlanta, GA, USA, 2010, pp. 3877–3883.

[31] 
K. Ogiwara, T. Fukami, and N. Takahashi, “Maximizing algebraic connectivity in the space of graphs with a fixed number of vertices and edges,” IEEE Trans. Control Netw. Syst., vol. 4, no. 2, pp. 359–368, Jun. 2015.

[32] 
A. Gusrialdi, Z. H. Qu, and S. Hirche, “Distributed link removal using local estimation of network topology,” IEEE Trans. Netw. Sci. Eng., vol. 6, no. 3, pp. 280–292, Jul.–Sept. 2019. doi: 10.1109/TNSE.2018.2813426

[33] 
P. Mukherjee, M. Santilli, A. Gasparri, and R. K. Williams, “Optimal topology selection for stable coordination of asymmetrically interacting multirobot systems,” in Proc. IEEE Int. Conf. Robotics and Automation, Paris, France, 2020, pp. 6668–6674.

[34] 
L. Kempton, G. Herrmann, and M. di Bernardo, “Adaptive weight selection for optimal consensus performance,” in Proc. IEEE Conf. Decision and Control, Los Angeles, CA, USA, 2014, pp. 2234–2239.

[35] 
J. Liu and T. Başar, “Toward optimal network topology design for fast and secure distributed computation,” in Proc. 5th Int. Conf. Decision and Game Theory for Security, Los Angeles, CA, USA, 2014, pp. 234–245.

[36] 
D. Groß and O. Stursberg, “Optimized distributed control and network topology design for interconnected systems,” in Proc. 50th IEEE Conf. Decision and Control and European Control Conf., Orlando, FL, USA, 2011, pp. 8112–8117.

[37] 
M. Jilg and O. Stursberg, “Optimized distributed control and topology design for hierarchically interconnected systems,” in Proc. European Control Conf., Zurich, Switzerland, 2013, pp. 4340–4346.

[38] 
H. L. Trentelman, K. Takaba, and N. Monshizadeh, “Robust synchronization of uncertain linear multiagent systems,” IEEE Trans. Automat. Contr., vol. 58, no. 6, pp. 1511–1523, Jun. 2013. doi: 10.1109/TAC.2013.2239011

[39] 
X. W. Li, Y. C. Soh, and L. H. Xie, “Robust consensus of uncertain linear multiagent systems via dynamic output feedback,” Automatica, vol. 98, pp. 114–123, Dec. 2018. doi: 10.1016/j.automatica.2018.09.020

[40] 
S. Z. Khong, E. Lovisari, and A. Rantzer, “A unifying framework for robust synchronization of heterogeneous networks via integral quadratic constraints,” IEEE Trans. Automat. Contr., vol. 61, no. 5, pp. 1297–1309, May 2016. doi: 10.1109/TAC.2016.2545118

[41] 
R. Carli, A. Chiuso, L. Schenato, and S. Zampieri, “Optimal synchronization for networks of noisy double integrators,” IEEE Trans. Automat. Contr., vol. 56, no. 5, pp. 1146–1152, May 2011. doi: 10.1109/TAC.2011.2107051

[42] 
H. Kim, H. Shim, and J. H. Seo, “Output consensus of heterogeneous uncertain linear multiagent systems,” IEEE Trans. Automat. Contr., vol. 56, no. 1, pp. 200–206, Jan. 2011. doi: 10.1109/TAC.2010.2088710

[43] 
J. Y. Wang, Z. S. Duan, G. H. Wen, and G. R. Chen, “Distributed robust control of uncertain linear multiagent systems,” Int. J. Robust Nonlinear Control, vol. 25, no. 13, pp. 2162–2179, Jun. 2015. doi: 10.1002/rnc.3199

[44] 
Z. K. Li, Z. S. Duan, L. H. Xie, and X. D. Liu, “Distributed robust control of linear multiagent systems with parameter uncertainties,” Int. J. Control, vol. 85, no. 8, pp. 1039–1050, Aug. 2012. doi: 10.1080/00207179.2012.674644

[45] 
W. C. Huang, J. P. Zeng, and H. F. Sun, “Robust consensus for linear multiagent systems with mixed uncertainties,” Syst. Control Lett., vol. 76, pp. 56–65, Feb. 2015. doi: 10.1016/j.sysconle.2014.12.005

[46] 
T. S. Hu, Z. L. Lin, and Y. Shamash, “On maximizing the convergence rate for linear systems with input saturation,” IEEE Trans. Automat. Contr., vol. 48, no. 7, pp. 1249–1253, Jul. 2003. doi: 10.1109/TAC.2003.814271

[47] 
C. Q. Ma and J. F. Zhang, “Necessary and sufficient conditions for consensusability of linear multiagent systems,” IEEE Trans. Automat. Contr., vol. 55, no. 5, pp. 1263–1268, May 2010. doi: 10.1109/TAC.2010.2042764

[48] 
A. Nemirovskii, “Several NPhard problems arising in robust stability analysis,” Math. Control,Signals Syst., vol. 6, no. 2, pp. 99–105, Jun. 1993. doi: 10.1007/BF01211741

[49] 
A. A. Ahmadi and G. Hall, “On the complexity of detecting convexity over a box,” Math. Progr., vol. 182, no. 1–2, pp. 429–443, Jul. 2020. doi: 10.1007/s1010701901396x

[50] 
A. BenTal and A. Nemirovski, “On tractable approximations of uncertain linear matrix inequalities affected by interval uncertainty,” SIAM J. Optim., vol. 12, no. 3, pp. 811–833, 2002. doi: 10.1137/S1052623400374756

[51] 
A. BenTal, A. Nemirovski, and C. Roos, “Extended matrix cube theorems with applications to μtheory in control,” Math. Oper. Res., vol. 28, no. 3, pp. 497–523, Aug. 2003. doi: 10.1287/moor.28.3.497.16392

[52] 
D. Lee and J. H. Hu, “Sequential parametric convex approximation algorithm for bilinear matrix inequality problem,” Optim. Lett., vol. 13, no. 4, pp. 741–759, Jun. 2019. doi: 10.1007/s1159001812746

[53] 
H. Zhang, J. Q. Wei, P. Yi, and X. M. Hu, “Projected primaldual gradient flow of augmented lagrangian with application to distributed maximization of the algebraic connectivity of a network,” Automatica, vol. 98, pp. 34–41, Dec. 2018. doi: 10.1016/j.automatica.2018.09.004

[54] 
D. Zhang, G. Feng, Y. Shi, and D. Srinivasan, “Physical safety and cyber security analysis of multiagent systems: A survey of recent advances,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 319–333, Feb. 2021. doi: 10.1109/JAS.2021.1003820
