A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 3 Issue 4
Oct.  2016

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 6.171, Top 11% (SCI Q1)
    CiteScore: 11.2, Top 5% (Q1)
    Google Scholar h5-index: 51, TOP 8
Turn off MathJax
Article Contents
Fabrizio Padula and Visioli Antonio, "Set-point Filter Design for a Two-degree-of-freedom Fractional Control System," IEEE/CAA J. Autom. Sinica, vol. 3, no. 4, pp. 451-462, Oct. 2016.
Citation: Fabrizio Padula and Visioli Antonio, "Set-point Filter Design for a Two-degree-of-freedom Fractional Control System," IEEE/CAA J. Autom. Sinica, vol. 3, no. 4, pp. 451-462, Oct. 2016.

Set-point Filter Design for a Two-degree-of-freedom Fractional Control System

Funds:

This work was supported by the Australian Research Council DP160104994

More Information
  • This paper focuses on a new approach to design (possibly fractional) set-point filters for fractional control systems. After designing a smooth and monotonic desired output signal, the necessary command signal is obtained via fractional input-output inversion. Then, a set-point filter is determined based on the synthesized command signal. The filter is computed by minimizing the 2-norm of the difference between the command signal and the filter step response. The proposed methodology allows the designer to synthesize both integer and fractional setpoint filters. The pros and cons of both solutions are discussed in details. This approach is suitable for the design of two degreeof-freedom controllers capable to make the set-point tracking performance almost independent from the feedback part of the controller. Simulation results show the effectiveness of the proposed methodology.

     

  • loading
  • [1]
    Valério D, Costa J S. Introduction to single-input, single-output fractional control. IET Control Theory&Applications, 2011, 5(8):1033-1057 http://cn.bing.com/academic/profile?id=2011026789&encoded=0&v=paper_preview&mkt=zh-cn
    [2]
    Monje C A, Chen Y Q, Vinagre B M, Xue D Y, Feliu-Batlle V. Fractional-order Systems and Controls:Fundamentals and Applications. London, UK:Springer-Verlag, 2010.
    [3]
    Sabatier J, Agrawal O P, Machado J A T. Advances in Fractional Calculus:Theoretical Developments and Applications in Physics and Engineering. London, UK:Springer, 2007.
    [4]
    Chen Y Q, Petráš I, Xue D Y. Fractional order control-a tutorial. In: Proceedings of the 2009 Conference on American Control Conference. Piscataway, NJ, USA:IEEE, 2009. 1397-1411
    [5]
    Victor S, Melchior P, Nelson-Gruel D, Oustaloup A. Flatness control for linear fractional MIMO systems:thermal application. In:Proceedings of the 3rd IFAC Workshop on Fractional Differentiation and its Applications. Ankara, Turkey:IFAC, 2008. 1-7
    [6]
    Jallouli-Khlif R, Melchior P, Derbel N, Oustaloup A. Robust path tracking by preshaping approach designed for third generation CRONE control. International Journal of Modeling, Identification and Control, 2012, 15(2):125-133 doi: 10.1504/IJMIC.2012.045218
    [7]
    Maione G. Continued fractions approximation of the impulse response of fractional-order dynamic systems. IET Control Theory&Applications, 2008, 2(7):564-572 http://cn.bing.com/academic/profile?id=1988967006&encoded=0&v=paper_preview&mkt=zh-cn
    [8]
    Caponetto R, Dongola G, Fortuna L, Gallo A. New results on the synthesis of FO-PID controllers. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(4):997-1007 doi: 10.1016/j.cnsns.2009.05.040
    [9]
    Padula F, Visioli A. Optimal tuning rules for proportional-integralderivative and fractional-order proportional-integral-derivative controllers for integral and unstable processes. IET Control Theory&Applications, 2012, 6(6):776-786 https://www.researchgate.net/publication/258284425_Optimal_tuning_rules_for_proportional-integralderivative_and_fractional-order_proportional-integralderivative_controllers_for_integral_and_unstable_processes
    [10]
    Pisano A, Rapaić M R, Jeličić Z, Usai E. Sliding mode control approaches to the robust regulation of linear multivariable fractionalorder dynamics. International Journal of Robust and Nonlinear Control, 2010, 20(18):2045-2056 doi: 10.1002/rnc.v20.18
    [11]
    Padula F, Vilanova R, Visioli A. H∞ model matching PID design for fractional FOPDT systems. In:Proceedings of the 2012 American Control Conference. Montreal, CA:ACC, 2012. 5513-5518
    [12]
    Padula F, Visioli A. Advances in Robust Fractional Control. Switzerland:Springer, 2015.
    [13]
    Visioli A. Practical PID Control. London, UK:Springer, 2006.
    [14]
    Padula F, Visioli A. Set-point weight tuning rules for fractional-order PID controllers. Asian Journal of Control, 2013, 15(3):678-690 doi: 10.1002/asjc.2013.15.issue-3
    [15]
    Orsoni B, Melchior P, Oustaloup A, Badie T, Robin G. Fractional motion control:application to an XY cutting table. Nonlinear Dynamics, 2002, 29(1-4):297-314 http://cn.bing.com/academic/profile?id=50670889&encoded=0&v=paper_preview&mkt=zh-cn
    [16]
    Padula F, Visioli A. Inversion-based feedforward and reference signal design for fractional constrained control systems. Automatica, 2014, 50(8):2169-2178 doi: 10.1016/j.automatica.2014.06.007
    [17]
    Piazzi A, Visioli A. Optimal inversion-based control for the set-point regulation of nonminimum-phase uncertain scalar systems. IEEE Transactions on Automatic Control, 2001, 46(10):1654-1659 doi: 10.1109/9.956067
    [18]
    Piazzi A, Visioli A. Robust set-point constrained regulation via dynamic inversion. International Journal of Robust and Nonlinear Control, 2001, 11(1):1-22 doi: 10.1002/(ISSN)1099-1239
    [19]
    Piazzi A, Visioli A. A noncausal approach for PID control. Journal of Process Control, 2006, 16(8):831-843 doi: 10.1016/j.jprocont.2006.03.001
    [20]
    Piazzi A, Visioli A. Optimal noncausal set-point regulation of scalar systems. Automatica, 2001, 37(1):121-127 doi: 10.1016/S0005-1098(00)00130-8
    [21]
    Padula F, Visioli A. Inversion-based set-point filter design for fractional control systems. In:Proceedings of the 2014 International Conference on Fractional Differentiation and Its Applications. Catania:IEEE, 2014. 1-6
    [22]
    Podlubny I. Fractional Differential Equations. San Diego:Academic Press, 1999.
    [23]
    Padula F, Visioli A. Optimal set-point regulation of fractional systems. In:Proceedings of the 6th IFAC Workshop on Fractional Differentiation and Its Applications. Grenoble:Elsevier, 2013. 911-916
    [24]
    Ortigueira M D, Coito F J V, Trujillo J J. A new look into the discretetime fractional calculus:transform and linear systems. In:Proceedings of the 6th IFAC Workshop on Fractional Differentiation and Its Applications. Grenoble:Elsevier, 2013. 630-635
    [25]
    Sabatier J, Moze M, Farges C. LMI stability conditions for fractional order systems. Computer&Mathematics with Applications, 2010, 59(5):1594-1609 http://cn.bing.com/academic/profile?id=1980407022&encoded=0&v=paper_preview&mkt=zh-cn
    [26]
    Oustaloup A, Levron F, Mathieu B, Nanot F M. Frequency-band complex noninteger differentiator:characterization and synthesis. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications, 2000, 47(1):25-39 doi: 10.1109/81.817385
    [27]
    Monje C A, Vinagre B M, Chen Y Q, Feliu V, Lanusse P, Sabatier J. Proposals for fractional PID tuning. In:Preprints IFAC Workshop on Fractional Differentiation and its Applications. Bordeaux:IFAC, 2004. 156-161

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views (1033) PDF downloads(3) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return