A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 2 Issue 1
Jan.  2015

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 6.171, Top 11% (SCI Q1)
    CiteScore: 11.2, Top 5% (Q1)
    Google Scholar h5-index: 51, TOP 8
Turn off MathJax
Article Contents
Lu Wang and Jianbo Su, "Trajectory Tracking of Vertical Take-off and Landing Unmanned Aerial Vehicles Based on Disturbance Rejection Control," IEEE/CAA J. of Autom. Sinica, vol. 2, no. 1, pp. 65-73, 2015.
Citation: Lu Wang and Jianbo Su, "Trajectory Tracking of Vertical Take-off and Landing Unmanned Aerial Vehicles Based on Disturbance Rejection Control," IEEE/CAA J. of Autom. Sinica, vol. 2, no. 1, pp. 65-73, 2015.

Trajectory Tracking of Vertical Take-off and Landing Unmanned Aerial Vehicles Based on Disturbance Rejection Control


This work was supported by National Natural Science Foundation of China (61221003).

  • We investigate the trajectory tracking problem of vertical take-off and landing (VTOL) unmanned aerial vehicles (UAV), and propose a practical disturbance rejection control strategy. Firstly, the nonlinear error model is established completely by the modified Rodrigues parameters, while considering dynamics of the servo actuators. Then, a hierarchical control scheme is applied to design the translational and rotational controllers based on the time-scale property of each subsystem, respectively. And the linear extended state observer and auxiliary observer are used to deal with the uncertainties and saturation. At last, global stability of the closed-loop system is analyzed based on the singular perturbation theory. Simulation results show the effectiveness of the proposed control strategy.


  • loading
  • [1]
    Brockett R W. Asymptotic stability and feedback stabilization. Differential Geometric Control Theory. Boston:Birkhäuser, 1983. 181-191
    Bouabdallah S, Siegwart R. Backstepping and sliding-mode techniques applied to an indoor micro quadrotor. In:Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Barcelona, Spain:IEEE, 2005. 2247-2252
    Mian A A, Wang D B. Modeling and backstepping-based nonlinear control strategy for a 6 DOF quadrotor helicopter. Chinese Journal of Aeronautics, 2008, 21(3):261-268
    Zuo Z. Trajectory tracking control design with command-filtered compensation for a quadrotor. IET Control Theory and Applications, 2010, 4(11):2343-2355
    Lee D, Kim H J, Sastry S. Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter. International Journal of Control, Automation and Systems, 2009, 7(3):419-428
    Xu R, Ö zgüner Ü. Sliding mode control of a class of underactuated systems. Automatica, 2008, 44(1):233-241
    Efe M Ö. Battery power loss compensated fractional order sliding mode control of a quadrotor UAV. Asian Journal of Control, 2012, 14(2):413-425
    Raffo G V, Ortega M G, Rubio F R. An integral predictive/nonlinear control structure for a quadrotor helicopter. Automatica, 2010, 46(1):29-39
    Efe M O. Neural network assisted computationally simple Plλ Dμ control of a quadrotor UAV. IEEE Transactions on Industrial Informatics, 2011, 7(2):354-361
    Zemalache K M, Maaref H. Controlling a drone:comparison between a based model method and a fuzzy inference system. Applied Soft Computing, 2009, 9(2):553-562
    Bertrand S, Guénard N, Hamel T, Piet-Lahanier H, Eck L. A hierarchical controller for miniature VTOL UAVs:design and stability analysis using singular perturbation theory. Control Engineering Practice, 2011, 19(10):1099-1008
    Abdessameud A, Tayebi A. Global trajectory tracking control of VTOLUAVs without linear velocity measurements. Automatica, 2010, 46(6):1053-1059
    Nicol C, Macnab C J B, Ramirez-Serrano A. Robust adaptive control of a quadrotor helicopter. Mechatronics, 2011, 21(6):927-938
    Ginsberg J. Engineering Dynamics. Cambridge:Cambridge University Press, 2008.
    Abdessameud A, Tayebi A. Formation control of VTOL Unmanned Aerial Vehicles with communication delays. Automatica, 2011, 47(11):2383-2394
    Wang L, Jia H M. The trajectory tracking problem of quadrotor UAV:global stability analysis and control design based on the cascade theory. Asian Journal of Control, 2014, 16(2):574-588
    Esteban S, Gordillo F, Aracil J. Three-time scale singular perturbation control and stability analysis for an autonomous helicopter on a platform. International Journal of Robust and Nonlinear Control, 2013, 23(12):1360-1392
    Michael N, Mellinger D, Lindsey Q, Kumar V. The GRASP multiple micro-UAV testbed. IEEE Robotics and Automation Magazine, 2010, 17(3):56-65
    Cabecinhas D, Cunha R, Silvestre C. A nonlinear quadrotor trajectory tracking controller with disturbance rejection. Control Engineering Practice, 2014, 16:1-10
    Wang L, Su J B. Global trajectory tracking of VTOL UAV based on disturbance rejection control. In:Proceedings of the 32nd Chinese Control Conference. Xi'an, China:IEEE, 2013. 4270-4275
    Tsiotras P. Further passivity results for the attitude control problem. IEEE Transactions on Automatic Control, 1998, 43(11):1597-1600
    Cong B L, Liu X D, Chen Z. Distributed attitude synchronization of formation flying via consensus-based virtual structure. Acta Astronautica, 2011, 68(11-12):1973-1986
    Zheng Q, Dong L L, Lee D H, Gao Z Q. Active disturbance rejection control for MEMS Gyroscopes. IEEE Transactions on Control Systems Technology, 2009, 17(6):1432-1438
    Khalil H K. Nonlinear Systems (Third edition). Upper Saddle River, New Jersey:Prentice Hall, 2002.
    Olfati-Saber R. Global configuration stabilization for the VTOL aircraft with strong input coupling. IEEE Transactions on Automatic Control, 2002, 47(11):1949-1952


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1059) PDF downloads(18) Cited by()


    DownLoad:  Full-Size Img  PowerPoint