A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 3 Issue 1
Jan.  2016

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 6.171, Top 11% (SCI Q1)
    CiteScore: 11.2, Top 5% (Q1)
    Google Scholar h5-index: 51, TOP 8
Turn off MathJax
Article Contents
Jingbei Yang, Shuang Cong, Feng Shuang and Herschel Rabitz, "Manipulations Between Eigenstates of 2-Level Quantum System Based on Optimal Measurements," IEEE/CAA J. of Autom. Sinica, vol. 3, no. 1, pp. 35-41, 2016.
Citation: Jingbei Yang, Shuang Cong, Feng Shuang and Herschel Rabitz, "Manipulations Between Eigenstates of 2-Level Quantum System Based on Optimal Measurements," IEEE/CAA J. of Autom. Sinica, vol. 3, no. 1, pp. 35-41, 2016.

Manipulations Between Eigenstates of 2-Level Quantum System Based on Optimal Measurements

Funds:

This work was supported by National Natural Science Foundation of China (61573330).

  • This paper explores the manipulation between eigenstates in a two-level system by a sequence of instantaneous projective measurements. Three cases of the manipulations are studied: the manipulation of optimal measurement-based control; the optimal measurement-based manipulation with the effect of free evolution of system; and the external control fields being used to compensate for the effect caused by the free evolution. Numerical simulations are conducted to verify the results obtained from the theoretically analytical solutions. The optimal parameters for each manipulation case are obtained. The experimental results indicate that the external control fields can make the optimal measurement-based control more effective.

     

  • loading
  • [1]
    Huang G M, Tarn T J, Clark J W. On the controllability of quantummechanical systems. Journal of Mathematical Physics, 1983, 24(11):2608-2618
    [2]
    Peirce A P, Dahleh M A, Rabitz H. Optimal control of quantummechanical systems:existence, numerical approximation, and applications. Physical Review A, 1988, 37(12):4950-4964
    [3]
    Palao J P, Kosloff R. Quantum computing by an optimal control algorithm for unitary transformations. Physical Review Letters, 2002, 89(18):188301
    [4]
    Montangero S, Calarco T, Fazio R. Robust optimal quantum gates for Josephson charge qubits. Physical Review Letters, 2007, 99(17):170501
    [5]
    Maximov I I, Tošner Z, Nielsen N C. Optimal control design of NMR and dynamic nuclear polarization experiments using monotonically convergent algorithms. Journal of Chemical Physics, 2008, 128(18):184505
    [6]
    Eitan R, Mundt M, Tannor D J. Optimal control with accelerated convergence:combining the Krotov and quasi-Newton methods. Physical Review A, 2011, 83(5):053426
    [7]
    Shuang F, Rabitz H. Cooperating or fighting with control noise in the optimal manipulation of quantum dynamics. The Journal of Chemical Physics, 2004, 121(19):9270-9278
    [8]
    Judson R S, Rabitz H. Teaching lasers to control molecules. Physical Review Letters, 1992, 68(10):1500-1503
    [9]
    Mendes R V, Manko V I. Quantum control and the Strocchi map. Physical Review A, 2003, 67(5):053404
    [10]
    Hwang B, Goan H S. Optimal control for non-Markovian open quantum systems. Physical Review A, 2012, 85(3):032321
    [11]
    Pechen A, Ilin N, Shuang F, Rabitz H. Quantum control by von Neumann measurements. Physical Review A, 2006, 74:052102
    [12]
    Shuang F, Rabitz H. Cooperating or fighting with decoherence in the optimal control of quantum dynamics. The Journal of Chemical Physics, 2006, 124(15):154105
    [13]
    Shuang F, Rabitz H, Dykman M. Foundations for cooperating with control noise in the manipulation of quantum dynamics. Physical Review E, 2007, 75(2):021103
    [14]
    Shuang F, Zhou M L, Pechen A, Wu R B, Shir O M, Rabitz H. Control of quantum dynamics by optimized measurements. Physical Review A, 2008, 78(6):063422
    [15]
    Zhu W S, Rabitz H. Closed loop learning control to suppress the effects of quantum decoherence. The Journal of Chemical Physics, 2003, 118(15):6751-6757
    [16]
    Roa L, Delgado A, Ladrón de Guevara M L, Klimov A B. Measurementdriven quantum evolution. Physical Review A, 2006, 73(1):012322
    [17]
    Gong J B, Rice S A. Measurement-assisted coherent control. The Journal of Chemical Physical, 2004, 120(21):9984-9988
    [18]
    Sugawara M. Quantum dynamics driven by continuous laser fields under measurements:towards measurement-assisted quantum dynamics control. The Journal of Chemical Physics, 2005, 123(20):204115
    [19]
    Sugawara M. Measurement-assisted quantum dynamics control of 5-level system using intense CW-laser fields. Chemical Physics Letters, 2006, 428(4-6):457-460
    [20]
    Yamamoto N, Hara S. Relation between fundamental estimation limit and stability in linear quantum systems with imperfect measurement. Physical Review A, 2007, 76(3):034102
    [21]
    Shuang F, Pechen A, Ho T S, Rabitz H. Observation-assisted optimal control of quantum dynamics. The Journal of Chemical Physics, 2007, 126(13):134303
    [22]
    Doherty A C, Jacobs K. Feedback control of quantum systems using continuous state estimation. Physical Review A, 1999, 60(4):2700-2711
    [23]
    Vijay R, Macklin C, Slichter D H, Weber S J, Murch K W, Naik R, Korotkov A N, Siddiqi I. Stabilizing Rabi oscillations in a superconducting qubit using quantum feedback. Nature, 2012, 490(7418):77-80
    [24]
    Brakhane S, Alt W, Kampschulte T, Martinez-Dorantes M, Reimann R, Yoon S, Widera A, Meschede D. Bayesian feedback control of a twoatom spin-state in an atom-cavity system. Physical Review Letters, 2012, 109(17):173601
    [25]
    Wang Y X, Wu R B, Chen X, Ge Y J, Shi J H, Rabitz H, Shuang F. Quantum state transformation by optimal projective measurements. Journal of Mathematical Chemistry, 2011, 49(2):507-519
    [26]
    Yan Y, Zou J, Xu B M, Li J G, Shao B. Measurement-based direct quantum feedback control in an open quantum system. Physical Review A, 2013, 88(3):032320
    [27]
    Cong S, Gao M Y, Cao G, Guo G C, Guo G P. Ultrafast manipulation of a double quantum-dot charge qubit using Lyapunov-based control method. IEEE Journal of Quantum Electronics, 2015, 51(8):8100108

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1006) PDF downloads(4) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return