A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 2 Issue 1
Jan.  2015

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 6.171, Top 11% (SCI Q1)
    CiteScore: 11.2, Top 5% (Q1)
    Google Scholar h5-index: 51, TOP 8
Turn off MathJax
Article Contents
Yuanqing Xia, Ning Zhou, Kunfeng Lu and Yong Li, "Attitude Control of Multiple Rigid Bodies with Uncertainties and Disturbances," IEEE/CAA J. of Autom. Sinica, vol. 2, no. 1, pp. 2-10, 2015.
Citation: Yuanqing Xia, Ning Zhou, Kunfeng Lu and Yong Li, "Attitude Control of Multiple Rigid Bodies with Uncertainties and Disturbances," IEEE/CAA J. of Autom. Sinica, vol. 2, no. 1, pp. 2-10, 2015.

Attitude Control of Multiple Rigid Bodies with Uncertainties and Disturbances

Funds:

This work was supported by National Basic Research Program of China (973 Program) (2012CB720002), National High Technology Research and Development Program of China (863 Program) (2012AA120601), National Natural Science Foundation of China (61225015), the Ph. D. Programs Foundation of Ministry of Education of China (20111101110012), and China Academy of Space Technology (CAST) Foundation (CAST201210).

  • Decentralized attitude synchronization and tracking control for multiple rigid bodies are investigated in this paper. In the presence of inertia uncertainties and environmental disturbances, we propose a class of decentralized adaptive sliding mode control laws. An adaptive control strategy is adopted to reject the uncertainties and disturbances. Using the Lyapunov approach and graph theory, it is shown that the control laws can guarantee a group of rigid bodies to track the desired time-varying attitude and angular velocity while maintaining attitude synchronization with other rigid bodies in the formation. Simulation examples are provided to illustrate the feasibility and advantage of the control algorithm.

     

  • loading
  • [1]
    Du H B, Li S H, Qian C J. Finite-time attitude tracking control of spacecraft with application to attitude synchronization. IEEE Transactions on Automatic Control, 2011, 56(11):2711-2717
    [2]
    Igarashi Y, Hatanaka T, Fujita M, Spong M W. Passivity-based attitude synchronization in SE(3). IEEE Transactions on Control Systems Technology, 2009, 17(5):1119-1134
    [3]
    Dong X G, Cao X B, Zhang J X, Shi L. A robust adaptive control law for satellite formation flying. Acta Automatica Sinica, 2013, 39(2):128-137
    [4]
    Peng J M, Wang J N, Ye X D. Distributed adaptive tracking control for unknown nonlinear networked systems. Acta Automatica Sinica, 2013, 39(10):1729-1735
    [5]
    Cao Y C, Ren W. Distributed coordinated tracking with reduced interaction via a variable structure approach. IEEE Transactions on Automatic Control, 2012, 57(1):33-48
    [6]
    Suul J A, Luna A, Rodriguez P, Undeland T. Voltage-sensor-less synchronization to unbalanced grids by frequency-adaptive virtual flux estimation. IEEE Transactions on Industrial Electronics, 2012, 59(7):2910-2923
    [7]
    Lawton J R, Beard R W. Synchronized multiple spacecraft rotations. Automatica, 2002, 38(8):1359-1364
    [8]
    Abdessameud A, Tayebi A. Attitude synchronization of a group of spacecraft without velocity measurements. IEEE Transactions on Automatic Control, 2009, 54(11):2642-2648
    [9]
    Bai H, Arcak M, Wen J T. Rigid body attitude coordination without inertial frame information. Automatica, 2008, 44(12):3170-3175
    [10]
    Ren W. Distributed cooperative attitude synchronization and tracking for multiple rigid bodies. IEEE Transactions on Control Systems Technology, 2010, 18(2):383-392
    [11]
    Min Hai-Bo, Liu Zhi-Guo, Liu Yuan, Wang Shi-Cheng, Yang Yan-Li. Coordination control of networked Euler-Lagrange systems with possible switching topology. Acta Automatica Sinica, 2013, 39(7):1003- 1010(in Chinese)
    [12]
    Zhou N, Xia Y Q, Lu K F, Li Y. Decentralised finite-time attitude synchronisation and tracking control for rigid spacecraft. International Journal of Systems Science, 2013, doi: 10.1080/00207721.2013.868949
    [13]
    Zhou N, Xia Y, Wang M, Fu M. Finite-time attitude control of multiple rigid spacecraft using terminal sliding mode. International Journal of Robust and Nonlinear Control, 2014, doi: 10.1002/rnc.3182
    [14]
    Khoo S Y, Xie L H, Man Z H. Robust finite-time consensus tracking algorithm for multirobot systems. IEEE/ASME Transactions on Mechatronics, 2009, 14(2):219-228
    [15]
    Chen Y P, Lo S C. Sliding-mode controller design for spacecraft attitude tracking maneuvers. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(4):1328-1333
    [16]
    Lo S C, Chen Y P. Smooth sliding-mode control for spacecraft attitude tracking maneuvers. Journal of Guidance Control and Dynamics, 1995, 18(6):1345-1349
    [17]
    Chen Z Y, Huang J. Attitude tracking and disturbance rejection of rigid spacecraft by adaptive control. IEEE Transactions on Automatic Control, 2009, 54(2):600-605
    [18]
    Ahmed J, Coppola V T, Bernstein D S. Adaptive asymptotic tracking of spacecraft attitude motion with inertia matrix identification. Journal of Guidance, Control, and Dynamics, 1998, 21(5):684-691
    [19]
    Wu B L, Wang D W, Poh E K. Decentralized robust adaptive control for attitude synchronization under directed communication topology. Journal of Guidance, Control, and Dynamics, 2011, 34(4):1276-1282
    [20]
    Merris R. Laplacian matrices of graphs:a survey. Linear Algebra and Its Applications, 1994, 197-198(5):143-176
    [21]
    Horn R A, Johnson C R. Topics in Matrix Analysis. Cambridge, England, UK:Cambridge University Press, 1991. 242-254
    [22]
    Qian C J, Lin W. A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Transactions on Automatic Control, 2001, 46(7):1061-1079
    [23]
    Hardy G H, Littlewood J E, Polya G. Inequalities. Cambridge, England, UK:Cambridge University Press, 1952.
    [24]
    Zhu Z, Xia Y Q, Fu M Y. Attitude stabilization of rigid spacecraft with finite-time convergence. International Journal of Robust and Nonlinear Control, 2010, 21(6):686-702
    [25]
    Slotine J J E, Coetsee J A. Adaptive sliding controller synthesis for nonlinear systems. International Journal of Control, 1986, 43(6):1631-1651
    [26]
    Lu K F, Xia Y Q. Adaptive attitude tracking control for rigid spacecraft with finite-time convergence. Automatica, 2013, 49(12):3591-3599
    [27]
    Shtessel Y, Taleb M, Plestan F. A novel adaptive-gain supertwisting sliding mode controller:Methodology and application. Automatica, 2012, 48(5):759-769
    [28]
    Zhou J K, Hu Q L, Friswell M I. Decentralized finite time attitude synchronization control of satellite formation flying. Journal of Guidance Control and Dynamics, 2013, 36(1):185-195

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1095) PDF downloads(9) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return