A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 3 Issue 4
Oct.  2016

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 6.171, Top 11% (SCI Q1)
    CiteScore: 11.2, Top 5% (Q1)
    Google Scholar h5-index: 51, TOP 8
Turn off MathJax
Article Contents
Changchun Hua, Tong Zhang, Yafeng Li and Xinping Guan, "Robust Output Feedback Control for Fractional Order Nonlinear Systems with Time-varying Delays," IEEE/CAA J. Autom. Sinica, vol. 3, no. 4, pp. 477-482, Oct. 2016.
Citation: Changchun Hua, Tong Zhang, Yafeng Li and Xinping Guan, "Robust Output Feedback Control for Fractional Order Nonlinear Systems with Time-varying Delays," IEEE/CAA J. Autom. Sinica, vol. 3, no. 4, pp. 477-482, Oct. 2016.

Robust Output Feedback Control for Fractional Order Nonlinear Systems with Time-varying Delays

Funds:

National Natural Science Foundation of China 61290322, 61273222, 61322303, 61473248, 61403335

Hebei Province Applied Basis Research Project 15967629D

Top Talents Project of Hebei Province and Yanshan University Project 13LGA020

More Information
  • Robust controller design problem is investigated for a class of fractional order nonlinear systems with time varying delays. Firstly, a reduced-order observer is designed. Then, an output feedback controller is designed. Both the designed observer and controller are independent of time delays. By choosing appropriate Lyapunov functions, we prove the designed controller can render the fractional order system asymptotically stable. A simulation example is given to verify the effectiveness of the proposed approach.

     

  • loading
  • [1]
    Podlubny I. Fractional Differential Equations:An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications. San Diego:Academic Press, 1999.
    [2]
    Pan I, Das S. Intelligent Fractional Order Systems and Control. Berlin Heidelberg:Springer, 2013.
    [3]
    Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations, Volume 204(North-Holland Mathematics Studies). New York:Elsevier Science Inc., 2006.
    [4]
    Lakshmikantham V, Leela S, Vasundhara Devi J. Theory of Fractional Dynamic Systems. Cambridge, UK:Cambridge Scientific Publishers, 2009.
    [5]
    Diethelm K. The Analysis of Fractional Differential Equations. Berlin:Springer, 2010.
    [6]
    Lakshmikantham V, Vatsala A S. Basic theory of fractional differential equations. Nonlinear Analysis:Theory, Methods and Applications, 2008, 69(8):2677-2682 doi: 10.1016/j.na.2007.08.042
    [7]
    Matignon D. Stability results for fractional differential equations with applications to control processing. Computational Engineering in Systems Applications, 1996, 2:963-968 http://cn.bing.com/academic/profile?id=56786142&encoded=0&v=paper_preview&mkt=zh-cn
    [8]
    Lu J G, Chen Y Q. Robust stability and stabilization of fractional-order interval systems with the fractional order α:the 0 << α << 1 case. IEEE Transactions on Automatic Control, 2010, 55(1):152-158 doi: 10.1109/TAC.2009.2033738
    [9]
    Lu J G, Chen G R. Robust stability and stabilization of fractional-order interval systems:an LMI approach. IEEE Transactions on Automatic Control, 2009, 54(6):1294-1299 doi: 10.1109/TAC.2009.2013056
    [10]
    Zhang X F, Liu L, Feng G, Wang Y Z. Asymptotical stabilization of fractional-order linear systems in triangular form. Automatica, 2013, 49(11):3315-3321 doi: 10.1016/j.automatica.2013.08.002
    [11]
    Lim Y H, Oh K K, Ahn H S. Stability and stabilization of fractionalorder linear systems subject to input saturation. IEEE Transactions on Automatic Control, 2013, 58(4):1062-1067 doi: 10.1109/TAC.2012.2218064
    [12]
    Aguila-Camacho N, Duarte-Mermoud M A, Gallegos J A. Lyapunov functions for fractional order systems. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(9):2951-2957 doi: 10.1016/j.cnsns.2014.01.022
    [13]
    Wen X J, Wu Z M, Lu J G. Stability analysis of a class of nonlinear fractional-order systems. IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs, 2008, 55(11):1178-1182 doi: 10.1109/TCSII.2008.2002571
    [14]
    Delavari H, Baleanu D, Sadati J. Stability analysis of Caputo fractionalorder nonlinear systems revisited. Nonlinear Dynamics, 2012, 67(4):2433-2439 doi: 10.1007/s11071-011-0157-5
    [15]
    Li Y, Chen Y Q, Podlubny I. Stability of fractional-order nonlinear dynamic systems:Lyapunov direct method and generalized MittagLeffler stability. Computers and Mathematics with Applications, 2010, 59(5):1810-1821 doi: 10.1016/j.camwa.2009.08.019
    [16]
    Hua C C, Guan X P, Shi P. Robust backstepping control for a class of time delayed systems. IEEE Transactions on Automatic Control, 2005, 50(6):894-899 doi: 10.1109/TAC.2005.849255
    [17]
    Bonnet C, Partington J R. Coprime factorizations and stability of fractional differential systems. Systems and Control Letters, 2000, 41(3):167-174 doi: 10.1016/S0167-6911(00)00050-5
    [18]
    Deng W H, Li C P, Lv J H. Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dynamics, 2007, 48(4):409-416 doi: 10.1007/s11071-006-9094-0
    [19]
    Kheirizad I, Tavazoei M S, Jalali A A. Stability criteria for a class of fractional order systems. Nonlinear Dynamics, 2010, 61(1-2):153-161 doi: 10.1007/s11071-009-9638-1
    [20]
    Zhang F R, Li C P. Stability analysis of fractional differential systems with order lying in (1, 2). Advances in Difference Equations, 2011, 2011:Article ID 213485 http://cn.bing.com/academic/profile?id=2058317840&encoded=0&v=paper_preview&mkt=zh-cn
    [21]
    Wen Y H, Zhou X F, Zhang Z X, Liu S. Lyapunov method for nonlinear fractional differential systems with delay. Nonlinear Dynamics, 2015, 82(1-2):1015-1025 doi: 10.1007/s11071-015-2214-y
    [22]
    Yu W, Li T Z. Stability analysis of fractional-order nonlinear systems with delay. Mathematical Problems in Engineering, 2014, 2014(4):Article ID 301235 http://cn.bing.com/academic/profile?id=2033083367&encoded=0&v=paper_preview&mkt=zh-cn
    [23]
    Wei Y H, Chen Y Q, Liang S, Wang Y. A novel algorithm on adaptive backstepping control of fractional order systems. Neurocomputing, 2015, 165:395-402 doi: 10.1016/j.neucom.2015.03.029
    [24]
    Ding D S, Qi D L, Meng Y, Xu L. Adaptive Mittag-Leffler stabilization of commensurate fractional-order nonlinear systems. In:Proceedings of the 53rd IEEE Conference on Decision and Control (CDC). Los Angeles, CA:IEEE, 2014. 6920-6926
    [25]
    Syta A, Litak G, Lenci S, Scheffler M. Chaotic vibrations of the duffing system with fractional damping. Chaos:An Interdisciplinary Journal of Nonlinear Science, 2014, 24(1):013107 doi: 10.1063/1.4861942

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (1079) PDF downloads(16) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return