A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 3 Issue 4
Oct.  2016

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 6.171, Top 11% (SCI Q1)
    CiteScore: 11.2, Top 5% (Q1)
    Google Scholar h5-index: 51, TOP 8
Turn off MathJax
Article Contents
Songsong Cheng, Shengguo Wang, Yiheng Wei, Qing Liang and Yong Wang, "Study on Four Disturbance Observers for FO-LTI Systems," IEEE/CAA J. Autom. Sinica, vol. 3, no. 4, pp. 442-450, Oct. 2016.
Citation: Songsong Cheng, Shengguo Wang, Yiheng Wei, Qing Liang and Yong Wang, "Study on Four Disturbance Observers for FO-LTI Systems," IEEE/CAA J. Autom. Sinica, vol. 3, no. 4, pp. 442-450, Oct. 2016.

Study on Four Disturbance Observers for FO-LTI Systems

Funds:

the National Natural Science Foundation of China 61573332, 61601431

Fundamental Research Funds for the Central Universities WK2100100028

More Information
  • This paper addresses the problem of designing disturbance observer for fractional order linear time invariant (FO-LTI) systems, where the disturbance includes time series expansion disturbance and sinusoidal disturbance. On one hand, the reduced order extended state observer (ROESO) and reduced order cascade extended state observer (ROCESO) are proposed for the case that the system state can be measured directly. On the other hand, the extended state observer (ESO) and the cascade extended state observer (CESO) are presented for another case when the system state cannot be measured directly. It is shown that combination of ROCESO and CESO can achieve a highly effective observation result. In addition, the way how to tune observer parameters to ensure the stability of the observers and reduce the observation error is presented in this paper. Finally, numerical simulations are given to illustrate the effectiveness of the proposed methods.

     

  • loading
  • [1]
    Monje C A, Chen Y Q, Vinagre B M, Xue D Y, Feliu-Batlle V. Fractional-Order Systems and Controls:Fundamentals and Applications. London, UK:Springer-Verlag, 2010.
    [2]
    Das S. Functional Fractional Calculus (Second edition). Berlin, Heidelberg:Springer, 2011.
    [3]
    Liao Z, Zhu Z T, Liang S, Peng C, Wang Y. Subspace identification for fractional order Hammerstein systems based on instrumental variables. International Journal of Control, Automation and Systems, 2012, 10(5):947-953 doi: 10.1007/s12555-012-0511-5
    [4]
    Patil M D, Vyawahare V A, Bhole M K. A new and simple method to construct root locus of general fractional-order systems. ISA Transactions, 2014, 53(2):380-390 doi: 10.1016/j.isatra.2013.09.002
    [5]
    Lan Y H, Li W J, Zhou Y, Luo Y P. Non-fragile observer design for fractional-order one-sided Lipschitz nonlinear systems. International Journal of Automation and Computing, 2013, 10(4):296-302 doi: 10.1007/s11633-013-0724-y
    [6]
    Liang S, Peng C, Liao Z, Wang Y. State space approximation for general fractional order dynamic systems. International Journal of Systems Science, 2014, 45(10):2203-2212 doi: 10.1080/00207721.2013.766773
    [7]
    Lu J G, Chen G R. Robust stability and stabilization of fractional-order interval systems:an LMI approach. IEEE Transactions on Automatic Control, 2009, 54(6):1294-1299 doi: 10.1109/TAC.2009.2013056
    [8]
    Lu J G, Chen Y Q. Robust stability and stabilization of fractional-order interval systems with the fractional order α:the case 0 << α << 1. IEEE Transactions on Automatic Control, 2010, 55(1):152-158 doi: 10.1109/TAC.2009.2033738
    [9]
    Ruszewski A. Practical stability and asymptotic stability of interval fractional discrete-time linear state-space system. Recent Advances in Automation, Robotics and Measuring Techniques. Switzerland:Springer International Publishing, 2014. 217-227 http://cn.bing.com/academic/profile?id=94421374&encoded=0&v=paper_preview&mkt=zh-cn
    [10]
    Liang Shu, Peng Cheng, Wang Yong. Improved linear matrix inequalities stability criteria for fractional order systems and robust stabilization synthesis:the 0 < α < 1 case. Control Theory and Applications, 2013, 30(4):531-535(in Chinese) http://cn.bing.com/academic/profile?id=2373078592&encoded=0&v=paper_preview&mkt=zh-cn
    [11]
    NDoye I, Darouach M, Zasadzinski M, Radhy N E. Robust stabilization of uncertain descriptor fractional-order systems. Automatica, 2013, 49(6):1907-1913 doi: 10.1016/j.automatica.2013.02.066
    [12]
    Agrawal S K, Das S. A modified adaptive control method for synchronization of some fractional chaotic systems with unknown parameters. Nonlinear Dynamics, 2013, 73(1-2):907-919 doi: 10.1007/s11071-013-0842-7
    [13]
    Li C L, Su K L, Zhang J, Wei D Q. Robust control for fractional-order four-wing hyperchaotic system using LMI. Optik-International Journal for Light and Electron Optics, 2013, 124(22):5807-5810 doi: 10.1016/j.ijleo.2013.04.054
    [14]
    Asheghan M M, Delshad S S, Beheshti M T H, Tavazoei M S. Nonfragile control and synchronization of a new fractional order chaotic system. Applied Mathematics and Computation, 2013, 222:712-721 doi: 10.1016/j.amc.2013.07.045
    [15]
    Guo L, Cao S Y. Anti-disturbance control theory for systems with multiple disturbances:a survey. ISA Transactions, 2014, 53(4):846-849 doi: 10.1016/j.isatra.2013.10.005
    [16]
    Shtessel Y, Edwards C, Fridman L, Levant A. Sliding Mode Control and Observation. New York:Springer, 2014.
    [17]
    Guo B Z, Jin F F. The active disturbance rejection and sliding mode control approach to the stabilization of the Euler-Bernoulli beam equation with boundary input disturbance. Automatica, 2013, 49(9):2911-2918 doi: 10.1016/j.automatica.2013.06.018
    [18]
    Yue H Y, Li J M. Adaptive fuzzy dynamic surface control for a class of perturbed nonlinear time-varying delay systems with unknown deadzone. International Journal of Automation and Computing, 2012, 9(5):545-554 doi: 10.1007/s11633-012-0678-5
    [19]
    Li Z, Xia Y, Cao X. Adaptive control of bilateral teleoperation with unsymmetrical time-varying delays. International Journal of Innovative Computing, Information and Control, 2013, 9(2):753-767
    [20]
    Liu R J, Liu G P, Wu M, Nie Z Y. Disturbance rejection for time-delay systems based on the equivalent-input-disturbance approach. Journal of the Franklin Institute, 2014, 351(6):3364-3377 doi: 10.1016/j.jfranklin.2014.02.015
    [21]
    Han Jing-Qing. Active Disturbance Rejection Control Technique-the Technique for Estimating and Compensating the Uncertainties. Beijing, China:National Defense Industry Press, 2008. (in Chinese)
    [22]
    Fedele G, Ferrise A. Periodic disturbance rejection with unknown frequency and unknown plant structure. Journal of the Franklin Institute, 2014, 351(2):1074-1092 doi: 10.1016/j.jfranklin.2013.10.013
    [23]
    Nakao M, Ohnishi K, Miyachi K. A robust decentralized joint control based on interference estimation. In:Proceedings of the 1987 IEEE International Conference on Robotics and Automation. Raleigh, North Carolina, USA:1987. 326-331
    [24]
    Chen W H, Yang J, Guo L, Li S H. Disturbance-observer-based control and related methods:an overview. IEEE Transactions on Industrial Electronics, 2016, 63(2):1083-1095 doi: 10.1109/TIE.2015.2478397
    [25]
    Park S K, Lee S H. Disturbance observer based robust control for industrial robots with flexible joints. In:Proceedings of the 2007 International Conference on Control, Automation, and Systems. Seoul, Korea:IEEE, 2007. 584-589
    [26]
    Ginoya D, Shendge P D, Phadke S B. Sliding mode control for mismatched uncertain systems using an extended disturbance observer. IEEE Transactions on Industrial Electronics, 2014, 61(4):1983-1992 doi: 10.1109/TIE.2013.2271597
    [27]
    Aguila-Camacho N, Duarte-Mermoud M A, Gallegos J A. Lyapunov functions for fractional order systems. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(9):2951-2957 doi: 10.1016/j.cnsns.2014.01.022
    [28]
    Wei Y H, Karimi H R, Liang S, Gao Q, Wang Y. General output feedback stabilization for fractional order systems:an LMI approach. Abstract and Applied Analysis, 2014, 2014:Article ID 737495 http://cn.bing.com/academic/profile?id=2025076994&encoded=0&v=paper_preview&mkt=zh-cn
    [29]
    Wei Y H, Gao Q, Peng C, Wang Y. A rational approximate method to fractional order systems. International Journal of Control, Automation, and Systems, 2014, 12(6):1180-1186 doi: 10.1007/s12555-013-0109-6
    [30]
    Li M D, Li D H, Wang J, Zhao C Z. Active disturbance rejection control for fractional-order system. ISA Transactions, 2013, 52(3):365-374 doi: 10.1016/j.isatra.2013.01.001

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (1090) PDF downloads(8) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return