A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 2 Issue 1
Jan.  2015

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 6.171, Top 11% (SCI Q1)
    CiteScore: 11.2, Top 5% (Q1)
    Google Scholar h5-index: 51, TOP 8
Turn off MathJax
Article Contents
Bin Xian, Jianchuan Guo and Yao Zhang, "Adaptive Backstepping Tracking Control of a 6-DOF Unmanned Helicopter," IEEE/CAA J. of Autom. Sinica, vol. 2, no. 1, pp. 19-24, 2015.
Citation: Bin Xian, Jianchuan Guo and Yao Zhang, "Adaptive Backstepping Tracking Control of a 6-DOF Unmanned Helicopter," IEEE/CAA J. of Autom. Sinica, vol. 2, no. 1, pp. 19-24, 2015.

Adaptive Backstepping Tracking Control of a 6-DOF Unmanned Helicopter

Funds:

This work was supported by Natural Science Foundation of Tianjin (14JCZDJC31900).

  • This paper presents an adaptive backstepping control design for a class of unmanned helicopters with parametric uncertainties. The control objective is to let the helicopter track some pre-defined position and yaw trajectories. In order to facilitate the control design, we divide the helicopter's dynamic model into three subsystems. The proposed controller combines the backstepping method with online parameter update laws to achieve the control objective. The global asymptotical stability (GAS) of the closed-loop system is proved by a Lyapunov based stability analysis. Numerical simulations demonstrate that the controller can achieve good tracking performance in the presence of parametric uncertainties.

     

  • loading
  • [1]
    Cai G W, Chen B M, Lee T H. Unmanned Rotorcraft Systems. London:Springer-Verlag, 2011. 1-5
    [2]
    Shim D H, Kim H J, Sastry S. Control system design for rotorcraftbased unmanned aerial vehicles using time-domain system identification. In:Proceedings of the 2000 IEEE International Conference on Control Applications. Anchorage, USA:IEEE, 2000. 808-813
    [3]
    Gavrilets V. Autonomous Aerobatic Maneuvering of Miniature Helicopters[Ph. D. dissertation], Massachusetts Institute of Technology, Boston, USA, 2003.
    [4]
    La Civita M, Papageorigious G, Messner W C, Kanade T. Design and flight testing of a gain-scheduled H loop shaping controller for wideenvelope flight of a robotic helicopter. In:Proceedings of the 2003 American Control Conference. Denver, USA:IEEE, 2003. 4195-4200
    [5]
    Takahashi M D, Schulein G, Whalley M. Flight control law design and development for an autonomous rotorcraft. In:Proceedings of the 64th American Helicopter Society International Annual Forum. Montreal, Canada:AHS International, Inc., 2008. 1652-1671
    [6]
    Koo T J, Sastry S. Output tracking control design of a helicopter model based on approximate linearization. In:Proceedings of the 37th IEEE Conference on Decision & Control. Tampa, USA:IEEE, 1998. 3635-3640
    [7]
    Raptis I A, Valavanis K P, Moreno W A. A novel nonlinear backstepping controller design for helicopters using the rotation matrix. IEEE Transactions on Control System Technology, 2011, 19(2):465-473
    [8]
    Ahmed B, Pota H R. Flight control of a rotary wing UAV using adaptive backstepping. In:Proceedings of the 2009 IEEE International Conference on Control and Automation. Christchurch, New Zealand:IEEE, 2009. 1780-1785
    [9]
    Isidori A, Marconi L, Serrani A. Robust nonlinear motion control of a helicopter. IEEE Transactions on Automatic Control, 2003, 48(3):413-426
    [10]
    Marconi L, Naldi R. Robust full degree-of-freedom tracking control of a helicopter. Automatica, 2007, 43(11):1909-1920
    [11]
    Shin J H, Kim H J, Kim Y D, Dixon W E. Autonomous flight of the rotorcraft-based UAV using RISE feedback and NN feedforward terms. IEEE Transactions on Control System Technology, 2012, 20(5):1392-1399
    [12]
    Sugeno M, Hirano I, Nakamura S, Korsu S. Development of an intelligent unmanned helicopter. In:Proceedings of the 4th IEEE International Conference on Fuzzy Systems. Yokohama, Japan:IEEE, 1995. 33-34
    [13]
    Johnson E N, Kannan S K. Adaptive trajectory control for autonomous helicopters. Journal of Guidance, Control, and Dynamics, 2005, 28(3):524-538
    [14]
    Lee T Y. Geometric tracking control of the attitude dynamics of a rigid body on SO(3). In:Proceedings of the 2011 American Control Conference. San Francisco, USA:IEEE, 2011. 1200-1205
    [15]
    Kanellakopoulos I, Kokotovic P V, Morse A S. Systematic design of adaptive controllers for feedback lineatization systems. IEEE Transactions on Automatic Control, 1991, 36(11):1241-1253
    [16]
    Slotine J E, Li W P. Applied Nonlinear Control. Englewood Cliffs:Prentice Hall, 1991. 122-126

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1072) PDF downloads(10) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return