A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 2 Issue 1
Jan.  2015

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Shuochen Liu, Zhiyong Geng and Junyong Sun, "Finite-time Attitude Control: A Finite-time Passivity Approach," IEEE/CAA J. of Autom. Sinica, vol. 2, no. 1, pp. 102-108, 2015.
Citation: Shuochen Liu, Zhiyong Geng and Junyong Sun, "Finite-time Attitude Control: A Finite-time Passivity Approach," IEEE/CAA J. of Autom. Sinica, vol. 2, no. 1, pp. 102-108, 2015.

Finite-time Attitude Control: A Finite-time Passivity Approach

Funds:

This work was supported by National Natural Science Foundation (NNSF) of China (61374033).

  • This paper studies the finite-time attitude control problem for a rigid body. It is known that linear asymptotically stabilizing control laws can be derived from passivity properties for the system which describes the kinematic and dynamic motion of the attitude. Our approach expands this framework by defining finite-time passivity and exploring the corresponding properties. For a rigid body, the desired attitude can be tracked in finite time using the designed finite-time attitude control law. Some finitetime passivity properties for the feedback connection systems are also shown. Numerical simulations are provided to demonstrate the effectiveness of the proposed control law.

     

  • loading
  • [1]
    Akella M R. Rigid body attitude tracking without angular velocity feedback. System and Control Letter, 2001, 42(4):321-326
    [2]
    Luo W, Chu Y, Ling K V. Inverse optimal adaptive control for attitude tracking of spacecraft. IEEE Transactions on Automatic Control, 2005, 50(11):1639-1654
    [3]
    Mayhew C G, Sanfelice R G, Teel A R. Quaternion-based hybrid control for robust global attitude tracking. IEEE Transactions on Automatic Control, 2011, 56(11):2555-2566
    [4]
    Schlanbusch R, Loria A, Kristiansen R, Nicklasson P J. PD+ based output feedback attitude control of rigid bodies. IEEE Transactions on Automatic Control, 2012, 57(8):2146-2152
    [5]
    Crouch P E. Spacecraft attitude control and stabilization:applications of geometric control theory to rigid body models. IEEE Transactions on Automatic Control, 1984, 29(4):321-331
    [6]
    Wen J T, Kenneth K D. The attitude control problem. IEEE Transactions on Automatic Control, 1991, 36(10):1148-1162
    [7]
    Egeland O, Godhavn J M. Passivity-based adaptive attitude control of a rigid spacecraft. IEEE Transactions on Automatic Control, 1994, 39(10):842-846
    [8]
    Yu S H, Yu X H, Shirinzadeh B, Meng Z H. Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica, 2005, 41(11):1957-1964
    [9]
    Jin E, Zhao S. Robust controllers design with finite time convergence for rigid spacecraft attitude tracking control. Aerospace Science Technology, 2008, 12(4):324-330
    [10]
    Du H, Li S, Qian C. Finite-time attitude tracking control of spacecraft with application to attitude synchronization. IEEE Transactions on Automatic Control, 2011, 56(11):2711-2717
    [11]
    Meng Z Y, Ren W, You Z. Distributed finite-time attitude containment control for multiple rigid bodies. Automatica, 2010, 46(12):2092-2099
    [12]
    Scharf D P, Hadeagh F Y, Ploen S R. A survey of spacecraft formation flying guidance and control (Part II):Control. In:Proceedings of the 2004 American Control Conference. Boston, USA:IEEE, 2004. 2976-2985
    [13]
    Lizarralde F,Wen J T. Attitude control without angular velocity measurement:a passivity approach. IEEE Transactions on Automatic Control, 1996, 41(3):468-472
    [14]
    Tsiotras P. Stabilization and optimality results for the attitude control problem. Journal of Guidance, Control, and Dynamics, 1996, 19(4):772-779
    [15]
    Tsiotras P. Further passivity results for the attitude control problem. IEEE Transactions on Automatic Control, 1998, 43(11):1597-1600
    [16]
    Tayebi A. Unit quaternion based output feedback for the attitude tracking problem. IEEE Transactions on Automatic Control, 2008, 53(6):1516-1520
    [17]
    Ren W. Distributed cooperative attitude synchronization and tracking for multiple rigid bodies. IEEE Transactions on Control Systems Technology, 2010, 18(2):383-392
    [18]
    Shuster M D. Survey of attitude representations. The Journal of the Astronautical Science, 1993, 41(4):439-517
    [19]
    Khalil H K. Nonlinear Systems (Third Edition). Jersey:Prentice Hall, 2002.
    [20]
    Bhat S, Bernstein D. Finite-time stability of continuous autonomous systems. SIAM Journal on Control and Optimization, 2000, 38(3):751-766
    [21]
    Hardy G, Littlewood J, Polya G. Inequalities. Cambridge, UK:Cambridge University Press, 1952.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1202) PDF downloads(24) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return