IEEE/CAA Journal of Automatica Sinica
Citation:  Baris Baykant Alagoz, "A Note on Robust Stability Analysis of Fractional Order Interval Systems by Minimum Argument Vertex and Edge Polynomials," IEEE/CAA J. Autom. Sinica, vol. 3, no. 4, pp. 411421, Oct. 2016. 
[1] 
Bhattacharyya S P, Keel L H, Chapellat H. Robust Control:The Parametric Approach. Englewood Cliffs, NJ:Prentice Hall, 1995. 269291 http://cn.bing.com/academic/profile?id=1574669531&encoded=0&v=paper_preview&mkt=zhcn

[2] 
Monje C A, Chen Y Q, Vinagre B M, Xue D Y, FeliuBatlle V. Fractionalorder Systems and Controls:Fundamentals and Applications. London:Springer, 2010.

[3] 
Petráš I. Stability of fractionalorder systems with rational orders:a survey. Fractional Calculus and Applied Analysis, 2009, 12(3):269298 http://cn.bing.com/academic/profile?id=2481180091&encoded=0&v=paper_preview&mkt=zhcn

[4] 
Das S. Functional Fractional Calculus (Second edition). Berlin:Springer, 2011.

[5] 
Chen Y Q, Ahn H S, Podlubny I. Robust stability check of fractional order linear time invariant systems with interval uncertainties. Signal Processing, 2006, 86(10):26112618 doi: 10.1016/j.sigpro.2006.02.011

[6] 
Ahn H S, Chen Y Q, Podlubny I. Robust stability test of a class of linear timeinvariant interval fractionalorder system using Lyapunov inequality. Applied Mathematics and Computation, 2007, 187(1):2734 doi: 10.1016/j.amc.2006.08.099

[7] 
Ahn H S, Chen Y Q. Necessary and sufficient stability condition of fractionalorder interval linear systems. Automatica, 2008, 44(11):29852988 doi: 10.1016/j.automatica.2008.07.003

[8] 
Lu J G, Chen G R. Robust stability and stabilization of fractionalorder interval systems:an LMI approach. IEEE Transactions on Automatic Control, 2009, 54(6):12941299 doi: 10.1109/TAC.2009.2013056

[9] 
N'Doye I, Darouach M, Zasadzinski M, Radhy N E. Robust stabilization of uncertain descriptor fractionalorder systems. Automatica, 2013, 49(6):19071913 doi: 10.1016/j.automatica.2013.02.066

[10] 
Petráš I, Chen Y Q, Vinagre B M. A robust stability test procedure for a class of uncertain LTI fractional order systems. In:Proceedings of the 2002 International Carpathian Control Conference ICCC'2002. Malenovice, Czech Republic, 2002. 247252

[11] 
Petráš I, Chen Y Q, Vinagre B M. Robust stability test for interval fractional order linear systems. Unsolved Problems in Mathematical Systems and Control Theory. Princeton, NJ:Princeton University Press, 2004. 208210

[12] 
Lu J G, Chen Y Q. Robust stability and stabilization of fractionalorder interval systems with the fractional order α:The 0 ＜＜ α ＜＜ 1 case. IEEE Transactions on Automatic Control, 2010, 55(1):152158 doi: 10.1109/TAC.2009.2033738

[13] 
Radwan A G, Soliman A M, Elwakil A S, Sedeek A. On the stability of linear systems with fractionalorder elements. Chaos, Solitons and Fractals, 2009, 40(5):23172328 doi: 10.1016/j.chaos.2007.10.033

[14] 
Senol B, Ates A, Alagoz B B, Yeroglu C. A numerical investigation for robust stability of fractionalorder uncertain systems. ISA Transactions, 2014, 53(2):189198 doi: 10.1016/j.isatra.2013.09.004

[15] 
Matignon D. Stability results for fractional differential equations with applications to control processing. In:Proceedings of the 1996 Computational Engineering in Systems Applications. Lille, France, 1996. 963968

[16] 
Minnichelli R J, Anagnost J J, Desoer C A. An elementary proof of Kharitonov's stability theorem with extensions. IEEE Transactions on Automatic Control, 1989, 34(9):995998 doi: 10.1109/9.35816

[17] 
Podlubny I. Fractional Differential Equations. San Diego:Academic Press, 1999.

[18] 
Xue D Y, Chen Y Q. Modeling, Analysis and Design of Control Systems in MATLAB and Simulink. River Edge, NJ, USA:World Scientific Publishing Company, 2014.

[19] 
Caponetto R, Dongola G, Fortuna L, Petras I. Fractional Order Systems:Modeling and Control Applications. Singapore:World Scientific Publishing Company, 2010.

[20] 
SheilSmall T. Complex Polynomials. Cambridge, UK:Cambridge University Press, 2002.
